Loading…

Genomic predictions with a multi-breed genomic relationship matrix

Multi-breed evaluations have the advantage of increasing the size of the reference population for genomic evaluations and are quite simple; however, combining breeds usually have a negative impact on prediction accuracy. The aim of this study was to evaluate the use of a multi-breed genomic relation...

Full description

Saved in:
Bibliographic Details
Published in:Journal of animal science 2019-12, Vol.97, p.49-50
Main Authors: Steyn, Yvette, Lourenco, Daniela, Misztal, Ignacy
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Multi-breed evaluations have the advantage of increasing the size of the reference population for genomic evaluations and are quite simple; however, combining breeds usually have a negative impact on prediction accuracy. The aim of this study was to evaluate the use of a multi-breed genomic relationship matrix (G), where SNP for each breed are non-shared. The multi-breed G is set assuming known genotypes for one breed and missing genotypes for the remaining breeds. This setup may avoid spurious IBS relationships between breeds and considers breed-specific allele frequencies. This scenario was contrasted to multi-breed evaluations where all SNP are shared, i.e., the same SNP, and to single-breed evaluations. Different SNP densities, namely 9k and 45k, and different effective population sizes (Ne) were tested. Five breeds mimicking recent beef cattle populations that diverged from the same historical population were simulated using different selection criteria. It was assumed that QTL effects were the same over all breeds. For the recent population, generations 1 to 9 had approximately half of the animals genotyped, whereas all 1200 animals were genotyped in generation 10. Genotyped animals in generation 10 were set as validation; therefore, each breed had a validation set. Analysis were performed using single-step GBLUP (ssGBLUP). Prediction accuracy was calculated as correlation between true (T) and genomic estimated (GE) BV. Accuracies of GEBV were lower for the larger Ne and low SNP density. All three scenarios using 45K resulted in similar accuracies, suggesting that the marker density is high enough to account for relationships and linkage disequilibrium with QTL. A shared multi-breed evaluation using 9K resulted in a decrease of accuracy of 0.08 for a smaller Ne and 0.11 for a larger Ne. This loss was mostly avoided when markers were treated as non-shared within the same genomic relationship matrix.
ISSN:0021-8812
1525-3163