Loading…
On the number of Monte Carlo runs in comparative probabilistic LCA
Introduction The Monte Carlo technique is widely used and recommended for including uncertainties LCA. Typically, 1000 or 10,000 runs are done, but a clear argument for that number is not available, and with the growing size of LCA databases, an excessively high number of runs may be a time-consumin...
Saved in:
Published in: | The international journal of life cycle assessment 2020-02, Vol.25 (2), p.394-402 |
---|---|
Main Author: | |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Introduction
The Monte Carlo technique is widely used and recommended for including uncertainties LCA. Typically, 1000 or 10,000 runs are done, but a clear argument for that number is not available, and with the growing size of LCA databases, an excessively high number of runs may be a time-consuming thing. We therefore investigate if a large number of runs are useful, or if it might be unnecessary or even harmful.
Probability theory
We review the standard theory or probability distributions for describing stochastic variables, including the combination of different stochastic variables into a calculation. We also review the standard theory of inferential statistics for estimating a probability distribution, given a sample of values. For estimating the distribution of a function of probability distributions, two major techniques are available, analytical, applying probability theory and numerical, using Monte Carlo simulation. Because the analytical technique is often unavailable, the obvious way-out is Monte Carlo. However, we demonstrate and illustrate that it leads to overly precise conclusions on the values of estimated parameters, and to incorrect hypothesis tests.
Numerical illustration
We demonstrate the effect for two simple cases: one system in a stand-alone analysis and a comparative analysis of two alternative systems. Both cases illustrate that statistical hypotheses that should not be rejected in fact are rejected in a highly convincing way, thus pointing out a fundamental flaw.
Discussion and conclusions
Apart form the obvious recommendation to use larger samples for estimating input distributions, we suggest to restrict the number of Monte Carlo runs to a number not greater than the sample sizes used for the input parameters. As a final note, when the input parameters are not estimated using samples, but through a procedure, such as the popular pedigree approach, the Monte Carlo approach should not be used at all. |
---|---|
ISSN: | 0948-3349 1614-7502 |
DOI: | 10.1007/s11367-019-01698-4 |