Loading…
An invariant of representations of phase-type distributions and some applications
In this paper we consider phase-type distributions, their Laplace transforms which are rational functions and their representations which are finite-state Markov chains with an absorbing state. We first prove that, in any representation, the minimal number of states which are visited before absorpti...
Saved in:
Published in: | Journal of applied probability 1996-06, Vol.33 (2), p.368-381 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | In this paper we consider phase-type distributions, their Laplace transforms which are rational functions and their representations which are finite-state Markov chains with an absorbing state. We first prove that, in any representation, the minimal number of states which are visited before absorption is equal to the difference of degree between denominator and numerator in the Laplace transform of the distribution. As an application, we prove that when the Laplace transform has a denominator with n real poles and a numerator of degree less than or equal to one the distribution has order n. We show that, in general, this result can be extended neither to the case where the numerator has degree two nor to the case of non-real poles. |
---|---|
ISSN: | 0021-9002 1475-6072 |
DOI: | 10.2307/3215060 |