Loading…

Myoelectric teleoperation of a complex robotic hand

Teleoperation continues to be a primary control mode in robotics applications, particularly for robots with complex hands. This paper details a novel method of teleoperation of complex anthropomorphic robotic hands: converting the myoelectric signal (generated by the operator's muscles during m...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on robotics and automation 1996-10, Vol.12 (5), p.775-788
Main Authors: Farry, K.A., Walker, I.D., Baraniuk, R.G.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Teleoperation continues to be a primary control mode in robotics applications, particularly for robots with complex hands. This paper details a novel method of teleoperation of complex anthropomorphic robotic hands: converting the myoelectric signal (generated by the operator's muscles during movement) into robot commands replicating the motion. Myoelectric prosthetic hands have used this user interface for over two decades; however, the feasibility of using this approach for commanding more than one degree-of-freedom, as in the pincher type grip in current myoelectric hands, has been in question. The research described in this paper addresses myoelectric control of NASA/Johnson Space Center's sixteen degree-of-freedom Utah/MIT Dextrous Hand for two grasping (key and chuck) options and three thumb motions (abduction, extension, and flexion). We discuss myoelectric signal processing approaches, data collection apparatus, and a realtime teleoperation implementation. We also present results in realtime discrimination of key and chuck grasps and offline discrimination of thumb motions. Our results include a 90% correct grasp selection rate and an 87% correct thumb motion selection, both using the myoelectric spectrum.
ISSN:1042-296X
2374-958X
DOI:10.1109/70.538982