Loading…
Three-dimensional particle tracking velocimetry using shallow neural network for real-time analysis
Three-dimensional particle tracking velocimetry (3D-PTV) technique is widely used to acquire the complicated trajectories of particles and flow fields. It is known that the accuracy of 3D-PTV depends on the mapping function to reconstruct three-dimensional particles locations. The mapping function b...
Saved in:
Published in: | arXiv.org 2020-02 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Three-dimensional particle tracking velocimetry (3D-PTV) technique is widely used to acquire the complicated trajectories of particles and flow fields. It is known that the accuracy of 3D-PTV depends on the mapping function to reconstruct three-dimensional particles locations. The mapping function becomes more complicated if the number of cameras is increased and there is a liquid-vapor interface, which crucially affect the total computation time. In this paper, using a shallow neural network model (SNN), we dramatically decrease the computation time with a high accuracy to successfully reconstruct the three-dimensional particle positions, which can be used for real-time particle detection for 3D-PTV. The developed technique is verified by numerical simulations and applied to measure a complex solutal Marangoni flow patterns inside a binary mixture droplet. |
---|---|
ISSN: | 2331-8422 |
DOI: | 10.48550/arxiv.2002.00517 |