Loading…

A new scenario for stability of nonlinear Bresse‐Timoshenko type systems with time dependent delay

In this paper, we study the asymptotic behavior for a Bresse‐Timoshenko type system with time‐dependent delay terms. Our results follow a recent approach given by Almeida Júnior and Ramos (Zeitschrift für angewandte Mathematik und Physik. 68, 1‐31. 2017) where they showed that the viscous damping a...

Full description

Saved in:
Bibliographic Details
Published in:Zeitschrift für angewandte Mathematik und Mechanik 2020-02, Vol.100 (2), p.n/a
Main Authors: Feng, B., Almeida, D. S., Santos, M. J., Rosário Miranda, L. G.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In this paper, we study the asymptotic behavior for a Bresse‐Timoshenko type system with time‐dependent delay terms. Our results follow a recent approach given by Almeida Júnior and Ramos (Zeitschrift für angewandte Mathematik und Physik. 68, 1‐31. 2017) where they showed that the viscous damping acting on angle rotation of the classical Bresse‐Timoshenko model eliminates the damage consequences of the so called second spectrum of frequency. Moreover, for Bresse‐Timoshenko type systems which are free of these consequences the assumption of equal wave speeds is not necessary anymore to get the exponential stability. Here, by introducing an appropriate Lyapunov functional we prove the exponential stability for time dependent delay cases regardless of any relationship between wave propagation velocities. In this paper, we study the asymptotic behavior for a Bresse‐Timoshenko type system with time‐dependent delay terms. Our results follow a recent approach given by Almeida Júnior and Ramos (Zeitschrift für angewandte Mathematik und Physik. 68, 1‐31. 2017) where they showed that the viscous damping acting on angle rotation of the classical Bresse‐Timoshenko model eliminates the damage consequences of the so called second spectrum of frequency….
ISSN:0044-2267
1521-4001
DOI:10.1002/zamm.201900160