Loading…

On Selberg’s eigenvalue conjecture for moduli spaces of abelian differentials

J.-C. Yoccoz proposed a natural extension of Selberg’s eigenvalue conjecture to moduli spaces of abelian differentials. We prove an approximation to this conjecture. This gives a qualitative generalization of Selberg’s $\frac{3}{16}$ theorem to moduli spaces of abelian differentials on surfaces of g...

Full description

Saved in:
Bibliographic Details
Published in:Compositio mathematica 2019-12, Vol.155 (12), p.2354-2398
Main Author: Magee, Michael
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:J.-C. Yoccoz proposed a natural extension of Selberg’s eigenvalue conjecture to moduli spaces of abelian differentials. We prove an approximation to this conjecture. This gives a qualitative generalization of Selberg’s $\frac{3}{16}$ theorem to moduli spaces of abelian differentials on surfaces of genus ${\geqslant}2$ .
ISSN:0010-437X
1570-5846
DOI:10.1112/S0010437X1900767X