Loading…

Nitrogen Availability Decreases the Severity of Snow Storm Damage in a Temperate Forest

Abstract Storms are among the greatest natural disturbances in temperate forests, and increased nitrogen (N) availability is thought to increase storm damage. However, the extent to which N availability increases damage from snowfall is less clear. To test how N availability might affect the suscept...

Full description

Saved in:
Bibliographic Details
Published in:Forest science 2020-02, Vol.66 (1), p.58-65
Main Authors: Walter, Christopher A, Burnham, Mark B, Adams, Mary Beth, McNeil, Brenden E, Deel, Lindsay N, Peterjohn, William T
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Abstract Storms are among the greatest natural disturbances in temperate forests, and increased nitrogen (N) availability is thought to increase storm damage. However, the extent to which N availability increases damage from snowfall is less clear. To test how N availability might affect the susceptibility of trees to snow damage in a temperate forest, we took advantage of an opportunistic storm and surveyed damage in fertilized and unfertilized stands, and across a native N availability gradient. In response to a severe, early season snow storm—a consequence of Superstorm Sandy—the percentages of both basal area and stems damaged were lower in a fertilized watershed than in an unfertilized watershed. Across the native N availability gradient, the percentage of basal area damaged by snow decreased with higher soil N. The effects of N availability on damage were also affected by tree species. Our results suggest that N availability decreases damage from snow storms, contrary to our hypotheses drawn from broader studies. Understanding the relation between storm damage and N availability is important, considering the global increase in N deposition, and since severe storms are likely to become more prevalent with climate change.
ISSN:0015-749X
1938-3738
DOI:10.1093/forsci/fxz064