Loading…
Continuous monitoring of land disturbance based on Landsat time series
We developed a new algorithm for COntinuous monitoring of Land Disturbance (COLD) using Landsat time series. COLD can detect many kinds of land disturbance continuously as new images are collected and provide historical land disturbance maps retrospectively. To better detect land disturbance, we tes...
Saved in:
Published in: | Remote sensing of environment 2020-03, Vol.238, p.111116, Article 111116 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We developed a new algorithm for COntinuous monitoring of Land Disturbance (COLD) using Landsat time series. COLD can detect many kinds of land disturbance continuously as new images are collected and provide historical land disturbance maps retrospectively. To better detect land disturbance, we tested different kinds of input data and explored many time series analysis techniques. We have several major observations as follows. First, time series of surface reflectance provides much better detection results than time series of Top-Of-Atmosphere (TOA) reflectance, and with some adjustments to the temporal density, time series from Landsat Analysis Ready Data (ARD) is better than it is from the same Landsat scene. Second, the combined use of spectral bands is always better than using a single spectral band or index, and if all the essential spectral bands have been employed, the inclusion of other indices does not further improve the algorithm performance. Third, the remaining outliers in the time series can be removed based on their deviation from model predicted values based on probability-based thresholds derived from normal or chi-squared distributions. Fourth, model initialization is pivotal for monitoring land disturbance, and a good initialization stability test can influence algorithm performance substantially. Fifth, time series model estimation with eight coefficients model, updated for every single observation, based on all available clear observations achieves the best result. Sixth, a change probability of 0.99 (chi-squared distribution) with six consecutive anomaly observations and a mean included angle |
---|---|
ISSN: | 0034-4257 1879-0704 |
DOI: | 10.1016/j.rse.2019.03.009 |