Loading…
On commutative homogeneous vector bundles attached to nilmanifolds
The notion of Gelfand pair (G, K) can be generalized if we consider homogeneous vector bundles over G/K instead of the homogeneous space G/K and matrix-valued functions instead of scalar-valued functions. This gives the definition of commutative homogeneous vector bundles. Being a Gelfand pair is a...
Saved in:
Published in: | arXiv.org 2020-03 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The notion of Gelfand pair (G, K) can be generalized if we consider homogeneous vector bundles over G/K instead of the homogeneous space G/K and matrix-valued functions instead of scalar-valued functions. This gives the definition of commutative homogeneous vector bundles. Being a Gelfand pair is a necessary condition of being a commutative homogeneous vector bundle. For the case in which G/K is a nilmanifold having square-integrable representations, in a previous article we determined a big family of commutative homogeneous vector bundles. In this paper, we complete that classification. |
---|---|
ISSN: | 2331-8422 |