Loading…

On commutative homogeneous vector bundles attached to nilmanifolds

The notion of Gelfand pair (G, K) can be generalized if we consider homogeneous vector bundles over G/K instead of the homogeneous space G/K and matrix-valued functions instead of scalar-valued functions. This gives the definition of commutative homogeneous vector bundles. Being a Gelfand pair is a...

Full description

Saved in:
Bibliographic Details
Published in:arXiv.org 2020-03
Main Authors: Rocío Díaz Martín, Saal, Linda
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Rocío Díaz Martín
Saal, Linda
description The notion of Gelfand pair (G, K) can be generalized if we consider homogeneous vector bundles over G/K instead of the homogeneous space G/K and matrix-valued functions instead of scalar-valued functions. This gives the definition of commutative homogeneous vector bundles. Being a Gelfand pair is a necessary condition of being a commutative homogeneous vector bundle. For the case in which G/K is a nilmanifold having square-integrable representations, in a previous article we determined a big family of commutative homogeneous vector bundles. In this paper, we complete that classification.
format article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2358139860</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2358139860</sourcerecordid><originalsourceid>FETCH-proquest_journals_23581398603</originalsourceid><addsrcrecordid>eNqNyrEOgjAQgOHGxESivMMlziSlFcRVo3FzcScVDoG0PeVanl8HH8DpH75_IRKldZ5VO6VWImUepZSq3Kui0Ik43jw05FwMJgwzQk-OnuiRIsOMTaAJHtG3FhlMCKbpsYVA4AfrjB86si1vxLIzljH9dS22l_P9dM1eE70jcqhHipP_Uq10UeX6UJVS_3d9ACklOrY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2358139860</pqid></control><display><type>article</type><title>On commutative homogeneous vector bundles attached to nilmanifolds</title><source>Publicly Available Content Database</source><creator>Rocío Díaz Martín ; Saal, Linda</creator><creatorcontrib>Rocío Díaz Martín ; Saal, Linda</creatorcontrib><description>The notion of Gelfand pair (G, K) can be generalized if we consider homogeneous vector bundles over G/K instead of the homogeneous space G/K and matrix-valued functions instead of scalar-valued functions. This gives the definition of commutative homogeneous vector bundles. Being a Gelfand pair is a necessary condition of being a commutative homogeneous vector bundle. For the case in which G/K is a nilmanifold having square-integrable representations, in a previous article we determined a big family of commutative homogeneous vector bundles. In this paper, we complete that classification.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Bundles ; Bundling</subject><ispartof>arXiv.org, 2020-03</ispartof><rights>2020. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2358139860?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>776,780,25732,36991,44569</link.rule.ids></links><search><creatorcontrib>Rocío Díaz Martín</creatorcontrib><creatorcontrib>Saal, Linda</creatorcontrib><title>On commutative homogeneous vector bundles attached to nilmanifolds</title><title>arXiv.org</title><description>The notion of Gelfand pair (G, K) can be generalized if we consider homogeneous vector bundles over G/K instead of the homogeneous space G/K and matrix-valued functions instead of scalar-valued functions. This gives the definition of commutative homogeneous vector bundles. Being a Gelfand pair is a necessary condition of being a commutative homogeneous vector bundle. For the case in which G/K is a nilmanifold having square-integrable representations, in a previous article we determined a big family of commutative homogeneous vector bundles. In this paper, we complete that classification.</description><subject>Bundles</subject><subject>Bundling</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNqNyrEOgjAQgOHGxESivMMlziSlFcRVo3FzcScVDoG0PeVanl8HH8DpH75_IRKldZ5VO6VWImUepZSq3Kui0Ik43jw05FwMJgwzQk-OnuiRIsOMTaAJHtG3FhlMCKbpsYVA4AfrjB86si1vxLIzljH9dS22l_P9dM1eE70jcqhHipP_Uq10UeX6UJVS_3d9ACklOrY</recordid><startdate>20200303</startdate><enddate>20200303</enddate><creator>Rocío Díaz Martín</creator><creator>Saal, Linda</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20200303</creationdate><title>On commutative homogeneous vector bundles attached to nilmanifolds</title><author>Rocío Díaz Martín ; Saal, Linda</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_23581398603</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Bundles</topic><topic>Bundling</topic><toplevel>online_resources</toplevel><creatorcontrib>Rocío Díaz Martín</creatorcontrib><creatorcontrib>Saal, Linda</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rocío Díaz Martín</au><au>Saal, Linda</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>On commutative homogeneous vector bundles attached to nilmanifolds</atitle><jtitle>arXiv.org</jtitle><date>2020-03-03</date><risdate>2020</risdate><eissn>2331-8422</eissn><abstract>The notion of Gelfand pair (G, K) can be generalized if we consider homogeneous vector bundles over G/K instead of the homogeneous space G/K and matrix-valued functions instead of scalar-valued functions. This gives the definition of commutative homogeneous vector bundles. Being a Gelfand pair is a necessary condition of being a commutative homogeneous vector bundle. For the case in which G/K is a nilmanifold having square-integrable representations, in a previous article we determined a big family of commutative homogeneous vector bundles. In this paper, we complete that classification.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2020-03
issn 2331-8422
language eng
recordid cdi_proquest_journals_2358139860
source Publicly Available Content Database
subjects Bundles
Bundling
title On commutative homogeneous vector bundles attached to nilmanifolds
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T06%3A38%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=On%20commutative%20homogeneous%20vector%20bundles%20attached%20to%20nilmanifolds&rft.jtitle=arXiv.org&rft.au=Roc%C3%ADo%20D%C3%ADaz%20Mart%C3%ADn&rft.date=2020-03-03&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2358139860%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-proquest_journals_23581398603%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2358139860&rft_id=info:pmid/&rfr_iscdi=true