Loading…

Real-Time Monitoring of Self-Aggregation of β‑Amyloid by a Fluorescent Probe Based on Ruthenium Complex

Self-accumulation of amyloid-β protein (Aβ) into insoluble fibrils is the major hallmark of Alzheimer’s disease. Real-time monitoring of fibril growth is essential for clarifying the mechanism underlying aggregation and discovering therapeutic targets. A variety of approaches including NMR, electron...

Full description

Saved in:
Bibliographic Details
Published in:Analytical chemistry (Washington) 2020-02, Vol.92 (4), p.2953-2960
Main Authors: Yu, Hui-juan, Zhao, Wei, Xie, Mengting, Li, Xiaoqing, Sun, Ming, He, Jun, Wang, Lu, Yu, Lin
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Self-accumulation of amyloid-β protein (Aβ) into insoluble fibrils is the major hallmark of Alzheimer’s disease. Real-time monitoring of fibril growth is essential for clarifying the mechanism underlying aggregation and discovering therapeutic targets. A variety of approaches including NMR, electron microscopy (EM), atomic force microscopy (AFM), and total internal reflection fluorescence microscopy (TIRFM) have been explored to monitor the fibril growth or reveal morphology of Aβ aggregates. However, none of the methods allow real-time observation under physiological conditions while without any perturbations. Here, we present a fluorescent probe [Ru­(phen)2(fipc)]2+ (Ru-fipc) (phen = 1,10-phenanthroline, fipc = 5-fluoro-N-(1,10-phenanthrolin-5-yl)-1H-indole-2-carboxamide) that can bind to all the Aβ forms, i.e., monomers, oligomers, and fibrils, while not perturbing aggregation. Using this probe in combination with laser confocal microscopy, the entire aggregation process could be clearly and exactly imaged at the single fibril level. The reliability of Ru-fipc was confirmed based on colocalization with thioflavin T (ThT). Importantly, Ru-fipc can be used to monitor the very early nucleation and oligomerization process, which is thought to be a critical step in the development of neurotoxicity while it cannot be visualized with ThT. To our knowledge, this is the first fluorescent probe developed for real-time monitoring of Aβ aggregation, especially for the very early assembly stage, in solution with minimal perturbation. This method is suitable for in vitro and in vivo studies. We believe this would provide a valuable complementary tool for the study of pathogenesis and discovery of therapeutic targets of neurodegenerative diseases.
ISSN:0003-2700
1520-6882
DOI:10.1021/acs.analchem.9b03566