Loading…
Linear interaction of two-dimensional free-stream disturbances with an oblique shock wave
The problem of interaction between disturbances and shock waves was solved by a theoretical approach called linear interaction analysis in the mid-twentieth century. More recently, great progress has been made in analysing shock–turbulence interactions by direct numerical simulation. However, an uns...
Saved in:
Published in: | Journal of fluid mechanics 2019-08, Vol.873, p.1179-1205 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The problem of interaction between disturbances and shock waves was solved by a theoretical approach called linear interaction analysis in the mid-twentieth century. More recently, great progress has been made in analysing shock–turbulence interactions by direct numerical simulation. However, an unsolved theoretical problem remains: What happens when no acoustic waves are stimulated behind the shock wave? The concept of a damped wave is introduced, which is a type of excited plane wave. Based on this, the dispersion and amplitude relationships between any incident plane wave and resulting stimulated waves are constructed analytically, systematically and comprehensively. The physical essence of damped waves and the existence of critical angles are clarified. It is demonstrated that a damped wave is a complex number space solution to the acoustic dispersion relationship under certain conditions. It acts as a bridge connecting fast and slow acoustic waves at the position where the
$x$
component of the group velocity is zero. There are two critical angles that can excite fast and slow acoustic waves, which determine the conditions that stimulate a damped wave. Our results show good agreement with theoretical and simulation results. The contribution of each excited wave to the transmission coefficient is evaluated, the distribution of the transmission coefficient is analysed and application to an engineering wedge model is performed. |
---|---|
ISSN: | 0022-1120 1469-7645 |
DOI: | 10.1017/jfm.2019.438 |