Loading…
Amino-functionalized mesoporous silica-magnetic graphene oxide nanocomposites as water-dispersible adsorbents for the removal of the oxytetracycline antibiotic from aqueous solutions: adsorption performance, effects of coexisting ions, and natural organic matter
The amino-functionalized mesoporous silica-magnetic graphene oxide nanocomposite (A-mGO-Si) was synthesized and used for oxytetracycline (OTC) removal from water. Various factors like the effects of initial concentration, contact time, and influence of pH were investigated. Selective adsorption expe...
Saved in:
Published in: | Environmental science and pollution research international 2020-02, Vol.27 (6), p.6560-6576 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The amino-functionalized mesoporous silica-magnetic graphene oxide nanocomposite (A-mGO-Si) was synthesized and used for oxytetracycline (OTC) removal from water. Various factors like the effects of initial concentration, contact time, and influence of pH were investigated. Selective adsorption experiments in connection with coexisting ions and dissolved organic matter (DOM) were also investigated. In this study, humic acid (HA) and tannic acid (TA) were representative of both hydrophobic and hydrophilic DOM, respectively. Results indicated that A-mGO-Si had an adsorption ability for OTC that was relatively greater than that of virgin magnetic graphene oxide (mGO), graphene oxide (GO), Fe
3
O
4
particles, and SBA-15 mesoporous silica and also showed a better uptake removal capacity for OTC at low initial concentration in comparison with the other adsorbents. The adsorption behavior of OTC onto A-mGO-Si could be described by the pseudo-second-order kinetic model and the Freundlich isotherm model. The electrostatic interaction has no influence on the OTC absorbed when the OTC is in an aqueous medium in its zwitterion form (3.22  |
---|---|
ISSN: | 0944-1344 1614-7499 |
DOI: | 10.1007/s11356-019-07186-4 |