Loading…
Pseudo-Differential Operators on Sobolev and Lipschitz Spaces
In this paper, by discovering a new fact that the Lebesgue boundedness of a class of pseudo- differential operators implies the Sobolev boundedness of another related class of pseudo-differential operators, the authors establish the boundedness of pseudo-differential operators with symbols in Sρ,δ^m...
Saved in:
Published in: | Acta mathematica Sinica. English series 2010, Vol.26 (1), p.131-142 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | In this paper, by discovering a new fact that the Lebesgue boundedness of a class of pseudo- differential operators implies the Sobolev boundedness of another related class of pseudo-differential operators, the authors establish the boundedness of pseudo-differential operators with symbols in Sρ,δ^m on Sobolev spaces, where ∈ R, ρ≤ 1 and δ≤ 1. As its applications, the boundedness of commutators generated by pseudo-differential operators on Sobolev and Bessel potential spaces is deduced. Moreover, the boundedness of pseudo-differential operators on Lipschitz spaces is also obtained. |
---|---|
ISSN: | 1439-8516 1439-7617 |
DOI: | 10.1007/s10114-010-8109-4 |