Loading…
Age Determination in Upper Scorpius with Eclipsing Binaries
The Upper Scorpius OB association is the nearest region of recent massive star formation and thus an important benchmark for investigations concerning stellar evolution and planet formation timescales. We present nine eclipsing binaries (EBs) in Upper Scorpius, three of which are newly reported here...
Saved in:
Published in: | The Astrophysical journal 2019-02, Vol.872 (2), p.161 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The Upper Scorpius OB association is the nearest region of recent massive star formation and thus an important benchmark for investigations concerning stellar evolution and planet formation timescales. We present nine eclipsing binaries (EBs) in Upper Scorpius, three of which are newly reported here and all of which were discovered from K2 photometry. Joint fitting of the eclipse photometry and radial velocities from newly acquired Keck I/HIRES spectra yields precise masses and radii for those systems that are spectroscopically double-lined. The binary orbital periods in our sample range from 0.6 to 100 days, with total masses ranging from 0.2 to 8 M . At least 33% of the EBs reside in hierarchical multiples, including two triples and one quadruple. We use these EBs to develop an empirical mass-radius relation for pre-main-sequence stars and evaluate the predictions of widely used stellar evolutionary models. We report evidence for an age of 5-7 Myr, which is self-consistent in the mass range of 0.3-5 M and based on the fundamentally determined masses and radii of EBs. Evolutionary models including the effects of magnetic fields imply an age of 9-10 Myr. Our results are consistent with previous studies that indicate that many models systematically underestimate the masses of low-mass stars by 20%-60% based on Hertzsprung-Russell diagram analyses. We also consider the dynamical states of several binaries and compare with expectations from tidal dissipation theories. Finally, we identify RIK 72 b as a long-period transiting brown dwarf (M = 59.2 6.8 MJup, R = 3.10 0.31 RJup, P 97.8 days) and an ideal benchmark for brown dwarf cooling models at 5-10 Myr. |
---|---|
ISSN: | 0004-637X 1538-4357 |
DOI: | 10.3847/1538-4357/aafe09 |