Loading…
The undecidability of self-embedding for term rewriting systems
The self-embedding property of term rewriting systems is closely related to the uniform termination property, since a nonself-embedding term rewriting system is uniform terminating. The self-embedding property is shown to be undecidable and partially decidable. It follows that the nonself-embedding...
Saved in:
Published in: | Information processing letters 1985-02, Vol.20 (2), p.61-64 |
---|---|
Main Author: | |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The self-embedding property of term rewriting systems is closely related to the uniform termination property, since a nonself-embedding term rewriting system is uniform terminating. The self-embedding property is shown to be undecidable and partially decidable. It follows that the nonself-embedding property is not partially decidable. This is true even for globally finite term rewriting systems. The same construction gives an easy alternate proof that uniform termination is undecidable in general and also for globally finite term rewriting systems. Also, the looping property is shown to be undecidable in the same way. |
---|---|
ISSN: | 0020-0190 1872-6119 |
DOI: | 10.1016/0020-0190(85)90063-8 |