Loading…

Axion-electron decoupling in nucleophobic axion models

The strongest upper bounds on the axion mass come from astrophysical observations like the neutrino burst duration of SN1987A, which depends on the axion couplings to nucleons, or the white-dwarf cooling rates and red-giant evolution, which involve the axion-electron coupling. It has been recently a...

Full description

Saved in:
Bibliographic Details
Published in:Physical review. D 2020-02, Vol.101 (3), Article 035027
Main Authors: Björkeroth, Fredrik, Di Luzio, Luca, Mescia, Federico, Nardi, Enrico, Panci, Paolo, Ziegler, Robert
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The strongest upper bounds on the axion mass come from astrophysical observations like the neutrino burst duration of SN1987A, which depends on the axion couplings to nucleons, or the white-dwarf cooling rates and red-giant evolution, which involve the axion-electron coupling. It has been recently argued that in variants of Dine-Fischler-Srednicki-Zhitnitsky (DFSZ) models with generation-dependent Peccei-Quinn charges an approximate axion-nucleon decoupling can occur, strongly relaxing the SN1987A bound. However, as in standard DFSZ models, the axion remains in general coupled to electrons, unless an ad hoc cancellation is engineered. Here we show that axion-electron decoupling can be implemented without extra tunings in DFSZ-like models with three Higgs doublets. Remarkably, the numerical value of the quark mass ratio mu/md∼1/2 is crucial to open up this possibility.
ISSN:2470-0010
2470-0029
DOI:10.1103/PhysRevD.101.035027