Loading…
An FFT‐based method for computing weighted minimal surfaces in microstructures with applications to the computational homogenization of brittle fracture
Summary Cell formulae for the effective crack resistance of a heterogeneous medium obeying Francfort‐Marigo's formulation of linear elastic fracture mechanics have been proved recently, both in the context of periodic and stochastic homogenization. This work proposes a numerical strategy for co...
Saved in:
Published in: | International journal for numerical methods in engineering 2020-04, Vol.121 (7), p.1367-1387 |
---|---|
Main Author: | |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Summary
Cell formulae for the effective crack resistance of a heterogeneous medium obeying Francfort‐Marigo's formulation of linear elastic fracture mechanics have been proved recently, both in the context of periodic and stochastic homogenization. This work proposes a numerical strategy for computing the effective, possibly anisotropic, crack resistance of voxelized microstructures using the fast Fourier transform (FFT). Based on Strang's continuous minimum cut—maximum flow duality, we explore a primal‐dual hybrid gradient method for computing the effective crack resistance, which may be readily integrated into an existing FFT‐based code for homogenizing thermal conductivity. We close with demonstrative numerical experiments. |
---|---|
ISSN: | 0029-5981 1097-0207 |
DOI: | 10.1002/nme.6270 |