Loading…
An FFT‐based method for computing weighted minimal surfaces in microstructures with applications to the computational homogenization of brittle fracture
Summary Cell formulae for the effective crack resistance of a heterogeneous medium obeying Francfort‐Marigo's formulation of linear elastic fracture mechanics have been proved recently, both in the context of periodic and stochastic homogenization. This work proposes a numerical strategy for co...
Saved in:
Published in: | International journal for numerical methods in engineering 2020-04, Vol.121 (7), p.1367-1387 |
---|---|
Main Author: | |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c3270-fe3239e8e133ce137f9cf9e1bfe02a3fd7e24611224f1d981b5d61a79f6c4ff53 |
---|---|
cites | cdi_FETCH-LOGICAL-c3270-fe3239e8e133ce137f9cf9e1bfe02a3fd7e24611224f1d981b5d61a79f6c4ff53 |
container_end_page | 1387 |
container_issue | 7 |
container_start_page | 1367 |
container_title | International journal for numerical methods in engineering |
container_volume | 121 |
creator | Schneider, Matti |
description | Summary
Cell formulae for the effective crack resistance of a heterogeneous medium obeying Francfort‐Marigo's formulation of linear elastic fracture mechanics have been proved recently, both in the context of periodic and stochastic homogenization. This work proposes a numerical strategy for computing the effective, possibly anisotropic, crack resistance of voxelized microstructures using the fast Fourier transform (FFT). Based on Strang's continuous minimum cut—maximum flow duality, we explore a primal‐dual hybrid gradient method for computing the effective crack resistance, which may be readily integrated into an existing FFT‐based code for homogenizing thermal conductivity. We close with demonstrative numerical experiments. |
doi_str_mv | 10.1002/nme.6270 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2376641836</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2376641836</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3270-fe3239e8e133ce137f9cf9e1bfe02a3fd7e24611224f1d981b5d61a79f6c4ff53</originalsourceid><addsrcrecordid>eNp1kLtOwzAUhi0EEqUg8QiWWFhSfEmTZqyqFpAKLGWOHOe4cZXEwXZUlYlHYObxeBLcy8riI_3n0y-fD6FbSkaUEPbQNjBKWErO0ICSLI0II-k5GoRVFo2zCb1EV85tCKF0TPgA_UxbvFisfr--C-GgxA34ypRYGYulabre63aNt6DXld9vdasbUWPXWyUkOKzbkElrnLe99L0N0Vb7Couuq7UUXpvWYW-wr-DUd8hCRWUas4ZWfx4CbBQurPa-BqysOFRdowslagc3pzlE74v5avYULd8en2fTZSR5uDNSwBnPYAKUcxmeVGVSZUALBYQJrsoUWJxQylisaBkMFOMyoSLNVCJjpcZ8iO6OvZ01Hz04n29Mb8MfXc54miQxnfAkUPdHan-ts6DyzgYXdpdTku_N58F8vjcf0OiIbnUNu3-5_PVlfuD_AMqQiew</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2376641836</pqid></control><display><type>article</type><title>An FFT‐based method for computing weighted minimal surfaces in microstructures with applications to the computational homogenization of brittle fracture</title><source>Wiley-Blackwell Read & Publish Collection</source><creator>Schneider, Matti</creator><creatorcontrib>Schneider, Matti</creatorcontrib><description>Summary
Cell formulae for the effective crack resistance of a heterogeneous medium obeying Francfort‐Marigo's formulation of linear elastic fracture mechanics have been proved recently, both in the context of periodic and stochastic homogenization. This work proposes a numerical strategy for computing the effective, possibly anisotropic, crack resistance of voxelized microstructures using the fast Fourier transform (FFT). Based on Strang's continuous minimum cut—maximum flow duality, we explore a primal‐dual hybrid gradient method for computing the effective crack resistance, which may be readily integrated into an existing FFT‐based code for homogenizing thermal conductivity. We close with demonstrative numerical experiments.</description><identifier>ISSN: 0029-5981</identifier><identifier>EISSN: 1097-0207</identifier><identifier>DOI: 10.1002/nme.6270</identifier><language>eng</language><publisher>Hoboken, USA: John Wiley & Sons, Inc</publisher><subject>brittle fracture ; Computation ; computational homogenization ; Crack propagation ; Fast Fourier transformations ; FFT‐based method ; Fourier transforms ; Fracture mechanics ; Homogenization ; Linear elastic fracture mechanics ; maximum flow ; Minimal surfaces ; primal‐dual algorithms ; Thermal conductivity</subject><ispartof>International journal for numerical methods in engineering, 2020-04, Vol.121 (7), p.1367-1387</ispartof><rights>2019 John Wiley & Sons, Ltd.</rights><rights>2020 John Wiley & Sons, Ltd.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3270-fe3239e8e133ce137f9cf9e1bfe02a3fd7e24611224f1d981b5d61a79f6c4ff53</citedby><cites>FETCH-LOGICAL-c3270-fe3239e8e133ce137f9cf9e1bfe02a3fd7e24611224f1d981b5d61a79f6c4ff53</cites><orcidid>0000-0001-7017-3618</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids></links><search><creatorcontrib>Schneider, Matti</creatorcontrib><title>An FFT‐based method for computing weighted minimal surfaces in microstructures with applications to the computational homogenization of brittle fracture</title><title>International journal for numerical methods in engineering</title><description>Summary
Cell formulae for the effective crack resistance of a heterogeneous medium obeying Francfort‐Marigo's formulation of linear elastic fracture mechanics have been proved recently, both in the context of periodic and stochastic homogenization. This work proposes a numerical strategy for computing the effective, possibly anisotropic, crack resistance of voxelized microstructures using the fast Fourier transform (FFT). Based on Strang's continuous minimum cut—maximum flow duality, we explore a primal‐dual hybrid gradient method for computing the effective crack resistance, which may be readily integrated into an existing FFT‐based code for homogenizing thermal conductivity. We close with demonstrative numerical experiments.</description><subject>brittle fracture</subject><subject>Computation</subject><subject>computational homogenization</subject><subject>Crack propagation</subject><subject>Fast Fourier transformations</subject><subject>FFT‐based method</subject><subject>Fourier transforms</subject><subject>Fracture mechanics</subject><subject>Homogenization</subject><subject>Linear elastic fracture mechanics</subject><subject>maximum flow</subject><subject>Minimal surfaces</subject><subject>primal‐dual algorithms</subject><subject>Thermal conductivity</subject><issn>0029-5981</issn><issn>1097-0207</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp1kLtOwzAUhi0EEqUg8QiWWFhSfEmTZqyqFpAKLGWOHOe4cZXEwXZUlYlHYObxeBLcy8riI_3n0y-fD6FbSkaUEPbQNjBKWErO0ICSLI0II-k5GoRVFo2zCb1EV85tCKF0TPgA_UxbvFisfr--C-GgxA34ypRYGYulabre63aNt6DXld9vdasbUWPXWyUkOKzbkElrnLe99L0N0Vb7Couuq7UUXpvWYW-wr-DUd8hCRWUas4ZWfx4CbBQurPa-BqysOFRdowslagc3pzlE74v5avYULd8en2fTZSR5uDNSwBnPYAKUcxmeVGVSZUALBYQJrsoUWJxQylisaBkMFOMyoSLNVCJjpcZ8iO6OvZ01Hz04n29Mb8MfXc54miQxnfAkUPdHan-ts6DyzgYXdpdTku_N58F8vjcf0OiIbnUNu3-5_PVlfuD_AMqQiew</recordid><startdate>20200415</startdate><enddate>20200415</enddate><creator>Schneider, Matti</creator><general>John Wiley & Sons, Inc</general><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0001-7017-3618</orcidid></search><sort><creationdate>20200415</creationdate><title>An FFT‐based method for computing weighted minimal surfaces in microstructures with applications to the computational homogenization of brittle fracture</title><author>Schneider, Matti</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3270-fe3239e8e133ce137f9cf9e1bfe02a3fd7e24611224f1d981b5d61a79f6c4ff53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>brittle fracture</topic><topic>Computation</topic><topic>computational homogenization</topic><topic>Crack propagation</topic><topic>Fast Fourier transformations</topic><topic>FFT‐based method</topic><topic>Fourier transforms</topic><topic>Fracture mechanics</topic><topic>Homogenization</topic><topic>Linear elastic fracture mechanics</topic><topic>maximum flow</topic><topic>Minimal surfaces</topic><topic>primal‐dual algorithms</topic><topic>Thermal conductivity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Schneider, Matti</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>International journal for numerical methods in engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Schneider, Matti</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An FFT‐based method for computing weighted minimal surfaces in microstructures with applications to the computational homogenization of brittle fracture</atitle><jtitle>International journal for numerical methods in engineering</jtitle><date>2020-04-15</date><risdate>2020</risdate><volume>121</volume><issue>7</issue><spage>1367</spage><epage>1387</epage><pages>1367-1387</pages><issn>0029-5981</issn><eissn>1097-0207</eissn><abstract>Summary
Cell formulae for the effective crack resistance of a heterogeneous medium obeying Francfort‐Marigo's formulation of linear elastic fracture mechanics have been proved recently, both in the context of periodic and stochastic homogenization. This work proposes a numerical strategy for computing the effective, possibly anisotropic, crack resistance of voxelized microstructures using the fast Fourier transform (FFT). Based on Strang's continuous minimum cut—maximum flow duality, we explore a primal‐dual hybrid gradient method for computing the effective crack resistance, which may be readily integrated into an existing FFT‐based code for homogenizing thermal conductivity. We close with demonstrative numerical experiments.</abstract><cop>Hoboken, USA</cop><pub>John Wiley & Sons, Inc</pub><doi>10.1002/nme.6270</doi><tpages>21</tpages><orcidid>https://orcid.org/0000-0001-7017-3618</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0029-5981 |
ispartof | International journal for numerical methods in engineering, 2020-04, Vol.121 (7), p.1367-1387 |
issn | 0029-5981 1097-0207 |
language | eng |
recordid | cdi_proquest_journals_2376641836 |
source | Wiley-Blackwell Read & Publish Collection |
subjects | brittle fracture Computation computational homogenization Crack propagation Fast Fourier transformations FFT‐based method Fourier transforms Fracture mechanics Homogenization Linear elastic fracture mechanics maximum flow Minimal surfaces primal‐dual algorithms Thermal conductivity |
title | An FFT‐based method for computing weighted minimal surfaces in microstructures with applications to the computational homogenization of brittle fracture |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T14%3A13%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20FFT%E2%80%90based%20method%20for%20computing%20weighted%20minimal%20surfaces%20in%20microstructures%20with%20applications%20to%20the%20computational%20homogenization%20of%20brittle%20fracture&rft.jtitle=International%20journal%20for%20numerical%20methods%20in%20engineering&rft.au=Schneider,%20Matti&rft.date=2020-04-15&rft.volume=121&rft.issue=7&rft.spage=1367&rft.epage=1387&rft.pages=1367-1387&rft.issn=0029-5981&rft.eissn=1097-0207&rft_id=info:doi/10.1002/nme.6270&rft_dat=%3Cproquest_cross%3E2376641836%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c3270-fe3239e8e133ce137f9cf9e1bfe02a3fd7e24611224f1d981b5d61a79f6c4ff53%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2376641836&rft_id=info:pmid/&rfr_iscdi=true |