Loading…

An FFT‐based method for computing weighted minimal surfaces in microstructures with applications to the computational homogenization of brittle fracture

Summary Cell formulae for the effective crack resistance of a heterogeneous medium obeying Francfort‐Marigo's formulation of linear elastic fracture mechanics have been proved recently, both in the context of periodic and stochastic homogenization. This work proposes a numerical strategy for co...

Full description

Saved in:
Bibliographic Details
Published in:International journal for numerical methods in engineering 2020-04, Vol.121 (7), p.1367-1387
Main Author: Schneider, Matti
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c3270-fe3239e8e133ce137f9cf9e1bfe02a3fd7e24611224f1d981b5d61a79f6c4ff53
cites cdi_FETCH-LOGICAL-c3270-fe3239e8e133ce137f9cf9e1bfe02a3fd7e24611224f1d981b5d61a79f6c4ff53
container_end_page 1387
container_issue 7
container_start_page 1367
container_title International journal for numerical methods in engineering
container_volume 121
creator Schneider, Matti
description Summary Cell formulae for the effective crack resistance of a heterogeneous medium obeying Francfort‐Marigo's formulation of linear elastic fracture mechanics have been proved recently, both in the context of periodic and stochastic homogenization. This work proposes a numerical strategy for computing the effective, possibly anisotropic, crack resistance of voxelized microstructures using the fast Fourier transform (FFT). Based on Strang's continuous minimum cut—maximum flow duality, we explore a primal‐dual hybrid gradient method for computing the effective crack resistance, which may be readily integrated into an existing FFT‐based code for homogenizing thermal conductivity. We close with demonstrative numerical experiments.
doi_str_mv 10.1002/nme.6270
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2376641836</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2376641836</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3270-fe3239e8e133ce137f9cf9e1bfe02a3fd7e24611224f1d981b5d61a79f6c4ff53</originalsourceid><addsrcrecordid>eNp1kLtOwzAUhi0EEqUg8QiWWFhSfEmTZqyqFpAKLGWOHOe4cZXEwXZUlYlHYObxeBLcy8riI_3n0y-fD6FbSkaUEPbQNjBKWErO0ICSLI0II-k5GoRVFo2zCb1EV85tCKF0TPgA_UxbvFisfr--C-GgxA34ypRYGYulabre63aNt6DXld9vdasbUWPXWyUkOKzbkElrnLe99L0N0Vb7Couuq7UUXpvWYW-wr-DUd8hCRWUas4ZWfx4CbBQurPa-BqysOFRdowslagc3pzlE74v5avYULd8en2fTZSR5uDNSwBnPYAKUcxmeVGVSZUALBYQJrsoUWJxQylisaBkMFOMyoSLNVCJjpcZ8iO6OvZ01Hz04n29Mb8MfXc54miQxnfAkUPdHan-ts6DyzgYXdpdTku_N58F8vjcf0OiIbnUNu3-5_PVlfuD_AMqQiew</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2376641836</pqid></control><display><type>article</type><title>An FFT‐based method for computing weighted minimal surfaces in microstructures with applications to the computational homogenization of brittle fracture</title><source>Wiley-Blackwell Read &amp; Publish Collection</source><creator>Schneider, Matti</creator><creatorcontrib>Schneider, Matti</creatorcontrib><description>Summary Cell formulae for the effective crack resistance of a heterogeneous medium obeying Francfort‐Marigo's formulation of linear elastic fracture mechanics have been proved recently, both in the context of periodic and stochastic homogenization. This work proposes a numerical strategy for computing the effective, possibly anisotropic, crack resistance of voxelized microstructures using the fast Fourier transform (FFT). Based on Strang's continuous minimum cut—maximum flow duality, we explore a primal‐dual hybrid gradient method for computing the effective crack resistance, which may be readily integrated into an existing FFT‐based code for homogenizing thermal conductivity. We close with demonstrative numerical experiments.</description><identifier>ISSN: 0029-5981</identifier><identifier>EISSN: 1097-0207</identifier><identifier>DOI: 10.1002/nme.6270</identifier><language>eng</language><publisher>Hoboken, USA: John Wiley &amp; Sons, Inc</publisher><subject>brittle fracture ; Computation ; computational homogenization ; Crack propagation ; Fast Fourier transformations ; FFT‐based method ; Fourier transforms ; Fracture mechanics ; Homogenization ; Linear elastic fracture mechanics ; maximum flow ; Minimal surfaces ; primal‐dual algorithms ; Thermal conductivity</subject><ispartof>International journal for numerical methods in engineering, 2020-04, Vol.121 (7), p.1367-1387</ispartof><rights>2019 John Wiley &amp; Sons, Ltd.</rights><rights>2020 John Wiley &amp; Sons, Ltd.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3270-fe3239e8e133ce137f9cf9e1bfe02a3fd7e24611224f1d981b5d61a79f6c4ff53</citedby><cites>FETCH-LOGICAL-c3270-fe3239e8e133ce137f9cf9e1bfe02a3fd7e24611224f1d981b5d61a79f6c4ff53</cites><orcidid>0000-0001-7017-3618</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids></links><search><creatorcontrib>Schneider, Matti</creatorcontrib><title>An FFT‐based method for computing weighted minimal surfaces in microstructures with applications to the computational homogenization of brittle fracture</title><title>International journal for numerical methods in engineering</title><description>Summary Cell formulae for the effective crack resistance of a heterogeneous medium obeying Francfort‐Marigo's formulation of linear elastic fracture mechanics have been proved recently, both in the context of periodic and stochastic homogenization. This work proposes a numerical strategy for computing the effective, possibly anisotropic, crack resistance of voxelized microstructures using the fast Fourier transform (FFT). Based on Strang's continuous minimum cut—maximum flow duality, we explore a primal‐dual hybrid gradient method for computing the effective crack resistance, which may be readily integrated into an existing FFT‐based code for homogenizing thermal conductivity. We close with demonstrative numerical experiments.</description><subject>brittle fracture</subject><subject>Computation</subject><subject>computational homogenization</subject><subject>Crack propagation</subject><subject>Fast Fourier transformations</subject><subject>FFT‐based method</subject><subject>Fourier transforms</subject><subject>Fracture mechanics</subject><subject>Homogenization</subject><subject>Linear elastic fracture mechanics</subject><subject>maximum flow</subject><subject>Minimal surfaces</subject><subject>primal‐dual algorithms</subject><subject>Thermal conductivity</subject><issn>0029-5981</issn><issn>1097-0207</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp1kLtOwzAUhi0EEqUg8QiWWFhSfEmTZqyqFpAKLGWOHOe4cZXEwXZUlYlHYObxeBLcy8riI_3n0y-fD6FbSkaUEPbQNjBKWErO0ICSLI0II-k5GoRVFo2zCb1EV85tCKF0TPgA_UxbvFisfr--C-GgxA34ypRYGYulabre63aNt6DXld9vdasbUWPXWyUkOKzbkElrnLe99L0N0Vb7Couuq7UUXpvWYW-wr-DUd8hCRWUas4ZWfx4CbBQurPa-BqysOFRdowslagc3pzlE74v5avYULd8en2fTZSR5uDNSwBnPYAKUcxmeVGVSZUALBYQJrsoUWJxQylisaBkMFOMyoSLNVCJjpcZ8iO6OvZ01Hz04n29Mb8MfXc54miQxnfAkUPdHan-ts6DyzgYXdpdTku_N58F8vjcf0OiIbnUNu3-5_PVlfuD_AMqQiew</recordid><startdate>20200415</startdate><enddate>20200415</enddate><creator>Schneider, Matti</creator><general>John Wiley &amp; Sons, Inc</general><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0001-7017-3618</orcidid></search><sort><creationdate>20200415</creationdate><title>An FFT‐based method for computing weighted minimal surfaces in microstructures with applications to the computational homogenization of brittle fracture</title><author>Schneider, Matti</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3270-fe3239e8e133ce137f9cf9e1bfe02a3fd7e24611224f1d981b5d61a79f6c4ff53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>brittle fracture</topic><topic>Computation</topic><topic>computational homogenization</topic><topic>Crack propagation</topic><topic>Fast Fourier transformations</topic><topic>FFT‐based method</topic><topic>Fourier transforms</topic><topic>Fracture mechanics</topic><topic>Homogenization</topic><topic>Linear elastic fracture mechanics</topic><topic>maximum flow</topic><topic>Minimal surfaces</topic><topic>primal‐dual algorithms</topic><topic>Thermal conductivity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Schneider, Matti</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>International journal for numerical methods in engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Schneider, Matti</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An FFT‐based method for computing weighted minimal surfaces in microstructures with applications to the computational homogenization of brittle fracture</atitle><jtitle>International journal for numerical methods in engineering</jtitle><date>2020-04-15</date><risdate>2020</risdate><volume>121</volume><issue>7</issue><spage>1367</spage><epage>1387</epage><pages>1367-1387</pages><issn>0029-5981</issn><eissn>1097-0207</eissn><abstract>Summary Cell formulae for the effective crack resistance of a heterogeneous medium obeying Francfort‐Marigo's formulation of linear elastic fracture mechanics have been proved recently, both in the context of periodic and stochastic homogenization. This work proposes a numerical strategy for computing the effective, possibly anisotropic, crack resistance of voxelized microstructures using the fast Fourier transform (FFT). Based on Strang's continuous minimum cut—maximum flow duality, we explore a primal‐dual hybrid gradient method for computing the effective crack resistance, which may be readily integrated into an existing FFT‐based code for homogenizing thermal conductivity. We close with demonstrative numerical experiments.</abstract><cop>Hoboken, USA</cop><pub>John Wiley &amp; Sons, Inc</pub><doi>10.1002/nme.6270</doi><tpages>21</tpages><orcidid>https://orcid.org/0000-0001-7017-3618</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0029-5981
ispartof International journal for numerical methods in engineering, 2020-04, Vol.121 (7), p.1367-1387
issn 0029-5981
1097-0207
language eng
recordid cdi_proquest_journals_2376641836
source Wiley-Blackwell Read & Publish Collection
subjects brittle fracture
Computation
computational homogenization
Crack propagation
Fast Fourier transformations
FFT‐based method
Fourier transforms
Fracture mechanics
Homogenization
Linear elastic fracture mechanics
maximum flow
Minimal surfaces
primal‐dual algorithms
Thermal conductivity
title An FFT‐based method for computing weighted minimal surfaces in microstructures with applications to the computational homogenization of brittle fracture
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T14%3A13%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20FFT%E2%80%90based%20method%20for%20computing%20weighted%20minimal%20surfaces%20in%20microstructures%20with%20applications%20to%20the%20computational%20homogenization%20of%20brittle%20fracture&rft.jtitle=International%20journal%20for%20numerical%20methods%20in%20engineering&rft.au=Schneider,%20Matti&rft.date=2020-04-15&rft.volume=121&rft.issue=7&rft.spage=1367&rft.epage=1387&rft.pages=1367-1387&rft.issn=0029-5981&rft.eissn=1097-0207&rft_id=info:doi/10.1002/nme.6270&rft_dat=%3Cproquest_cross%3E2376641836%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c3270-fe3239e8e133ce137f9cf9e1bfe02a3fd7e24611224f1d981b5d61a79f6c4ff53%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2376641836&rft_id=info:pmid/&rfr_iscdi=true