Loading…

Wettability of Wood Surface Layer Examined From Chemical Change Perspective

The effect of artificial ageing on spruce (Picea abies), beech (Fagus sylvatica L.), birch (Betula pendula), and sessile oak (Quercus petraea) wood surfaces were investigated using qualitative (total phenolic and total soluble carbohydrate content) chemical examination methods. During ageing (∑240h)...

Full description

Saved in:
Bibliographic Details
Published in:Coatings (Basel) 2020-03, Vol.10 (3), p.257
Main Authors: Papp, Eva Annamaria, Csiha, Csilla, Makk, Adam Nandor, Hofmann, Tamas, Csoka, Levente
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The effect of artificial ageing on spruce (Picea abies), beech (Fagus sylvatica L.), birch (Betula pendula), and sessile oak (Quercus petraea) wood surfaces were investigated using qualitative (total phenolic and total soluble carbohydrate content) chemical examination methods. During ageing (∑240h), the influence of surface chemistry modifications was monitored by contact angle measurements of polar, dispersive (distilled water), and dispersive (diiodomethane) liquids. The results clearly show the relation between the ratio of main chemical components of the wood surface layer and surface wettability during artificial radiation. The identified surface chemistry modifications cause more significant change in the contact angle of polar and dispersive liquid, relative to the change of dispersive liquid contact angle. Chemical changes of the wood surface layer are due to the degradation of the main wood components (cellulose, hemicelluloses, and lignin) which can be properly monitored by total phenolic (TPC) and total soluble carbohydrate content (TSCC) measurements.
ISSN:2079-6412
2079-6412
DOI:10.3390/coatings10030257