Loading…
On Hom-Groups and Hom-Group actions
A Hom-group is the non-associative generalization of a group, whose associativity and unitality are twisted by a compatible bijective map. In this paper, we give some new examples of Hom-groups, and show the first and the second isomorphism fundamental theorems of homomorphisms on Hom-groups. We als...
Saved in:
Published in: | arXiv.org 2020-12 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | A Hom-group is the non-associative generalization of a group, whose associativity and unitality are twisted by a compatible bijective map. In this paper, we give some new examples of Hom-groups, and show the first and the second isomorphism fundamental theorems of homomorphisms on Hom-groups. We also introduce the notion of Hom-group action, and as an application, we show the first Sylow theorem for Hom-groups along the line of group actions. |
---|---|
ISSN: | 2331-8422 |