Loading…
Real-Time Autonomous Obstacle Avoidance for Fixed-Wing UAVs Using a Dynamic Model
AbstractThis paper presents an approach for real-time autonomous obstacle avoidance for fixed-wing unmanned aerial vehicles (UAVs) for scenarios in which a UAV is required to stay close to a reference path. A key challenge is rapid trajectory generation around obstacles while accommodating vehicle c...
Saved in:
Published in: | Journal of aerospace engineering 2020-07, Vol.33 (4) |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | AbstractThis paper presents an approach for real-time autonomous obstacle avoidance for fixed-wing unmanned aerial vehicles (UAVs) for scenarios in which a UAV is required to stay close to a reference path. A key challenge is rapid trajectory generation around obstacles while accommodating vehicle constraints. A UAV model with nonlinear dynamic constraints provides more natural accommodation of the vehicle’s constraints than a kinematic model with linear constraints. This paper presents a method for using finite horizon model predictive control with a custom solver that offers low solution time. A comparative study of a high-fidelity model and a lower-fidelity counterpart is presented. Using the proposed method, the high-fidelity model provides better trajectories than the lower-fidelity counterpart, despite both having low computational requirement for onboard trajectory generation in an embedded platform. |
---|---|
ISSN: | 0893-1321 1943-5525 |
DOI: | 10.1061/(ASCE)AS.1943-5525.0001143 |