Loading…

Application of a Dynamic Clustered Bayesian Model Averaging (DCBA) Algorithm for Merging Multisatellite Precipitation Products over Pakistan

Merged multisatellite precipitation datasets (MMPDs) combine the advantages of individual satellite precipitation products (SPPs), have a tendency to reduce uncertainties, and provide higher potentials to hydrological applications. This study applied a dynamic clustered Bayesian model averaging (DCB...

Full description

Saved in:
Bibliographic Details
Published in:Journal of hydrometeorology 2020-01, Vol.21 (1), p.17-37
Main Authors: Rahman, Khalil Ur, Shang, Songhao, Shahid, Muhammad, Wen, Yeqiang, Khan, Zeeshan
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Merged multisatellite precipitation datasets (MMPDs) combine the advantages of individual satellite precipitation products (SPPs), have a tendency to reduce uncertainties, and provide higher potentials to hydrological applications. This study applied a dynamic clustered Bayesian model averaging (DCBA) algorithm to merge four SPPs across Pakistan. The DCBA algorithm produced dynamic weights to different SPPs varying both spatially and temporally to accommodate the spatiotemporal differences of SPP performances. The MMPD is developed at daily temporal scale from 2000 to 2015 with spatial resolution of 0.25° using extensively evaluated SPPs and a global atmospheric reanalysis–precipitation dataset: Tropical Rainfall Measurement Mission (TRMM) Multisatellite Precipitation Analysis (TMPA) 3B42V7, Precipitation Estimation from Remotely Sensed Information Using Artificial Neural Networks–Climate Data Record (PERSIANN-CDR), Climate Prediction Center morphing technique (CMORPH), and ERA-Interim. The DCBA algorithm is evaluated across four distinct climate regions of Pakistan over 102 ground precipitation gauges (GPGs). DCBA forecasting outperformed all four SPPs with average Theil’s U of 0.49, 0.38, 0.37, and 0.36 in glacial, humid, arid, and hyperarid regions, respectively. The average mean bias error (MBE), mean error (MAE), root-mean-square error (RMSE), correlation coefficient (CC), and standard deviation (SD) of DCBA over all of Pakistan are 0.54, 1.40, 4.94, 0.77, and 5.17 mm day −1, respectively. Seasonal evaluation revealed a dependency ofDCBAperformance on precipitation magnitude/intensity and elevation. Relatively poor DCBA performance is observed in premonsoon/monsoon seasons and at high/mild elevated regions. Average improvements of DCBA in comparison with TMPA are 59.56% (MBE), 49.37% (MAE), 45.89% (RMSE), 19.48% (CC), 46.7% (SD), and 18.66% (Theil’s U. Furthermore, DCBA efficiently captured extreme precipitation trends (premonsoon/monsoon seasons).
ISSN:1525-755X
1525-7541
DOI:10.1175/JHM-D-19-0087.1