Loading…
Nucleus I: Adjunction spectra in recommender systems and descent
Recommender systems build user profiles using concept analysis of usage matrices. The concepts are mined as spectra and form Galois connections. Descent is a general method for spectral decomposition in algebraic geometry and topology which also leads to generalized Galois connections. Both recommen...
Saved in:
Published in: | arXiv.org 2023-10 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Recommender systems build user profiles using concept analysis of usage matrices. The concepts are mined as spectra and form Galois connections. Descent is a general method for spectral decomposition in algebraic geometry and topology which also leads to generalized Galois connections. Both recommender systems and descent theory are vast research areas, separated by a technical gap so large that trying to establish a link would seem foolish. Yet a formal link emerged, all on its own, bottom-up, against authors' intentions and better judgment. Familiar problems of data analysis led to a novel solution in category theory. The present paper arose from a series of earlier efforts to provide a top-down account of these developments. |
---|---|
ISSN: | 2331-8422 |