Loading…

Space–Time Characteristics of Areal Reduction Factors and Rainfall Processes

We estimate areal reduction factors (ARFs; the ratio of catchment rainfall and point rainfall) varying in space and time using a fixed-area method for Austria and link them to the dominating rainfall processes in the region. We particularly focus on two subregions in the west and east of the country...

Full description

Saved in:
Bibliographic Details
Published in:Journal of hydrometeorology 2020-04, Vol.21 (4), p.671-689
Main Authors: Breinl, Korbinian, Müller-Thomy, Hannes, Blöschl, Günter
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:We estimate areal reduction factors (ARFs; the ratio of catchment rainfall and point rainfall) varying in space and time using a fixed-area method for Austria and link them to the dominating rainfall processes in the region. We particularly focus on two subregions in the west and east of the country, where stratiform and convective rainfall processes dominate, respectively. ARFs are estimated using a rainfall dataset of 306 rain gauges with hourly resolution for five durations between 1 h and 1 day. Results indicate that the ARFs decay faster with area in regions of increased convective activity than in regions dominated by stratiform processes. Low ARF values occur where and when lightning activity (as a proxy for convective activity) is high, but some areas with reduced lightning activity exhibit also rather low ARFs as, in summer, convective rainfall can occur in any part of the country. ARFs tend to decrease with increasing return period, possibly because the contribution of convective rainfall is higher. The results of this study are consistent with similar studies in humid climates and provide new insights regarding the relationship of ARFs and dominating rainfall processes.
ISSN:1525-755X
1525-7541
DOI:10.1175/JHM-D-19-0228.1