Loading…

Free Vibration of FGSW Plates Partially Supported by Pasternak Foundation Based on Refined Shear Deformation Theories

A refined third-order shear deformation theory (RTSDT), in which the transverse displacement is split into bending and shear parts, is employed to formulate a four-node quadrilateral finite element for free vibration analysis of functionally graded sandwich (FGSW) plates partially supported by a Pas...

Full description

Saved in:
Bibliographic Details
Published in:Mathematical problems in engineering 2020, Vol.2020 (2020), p.1-13
Main Authors: Le, Cong Ich, Nguyen, Dinh Kien, Pham, Vu Nam
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:A refined third-order shear deformation theory (RTSDT), in which the transverse displacement is split into bending and shear parts, is employed to formulate a four-node quadrilateral finite element for free vibration analysis of functionally graded sandwich (FGSW) plates partially supported by a Pasternak foundation. An element based on the refined first-order shear deformation theory (RFSDT) which requires a shear correction factor is also derived for comparison purpose. The plates consist of a fully ceramic core and two functionally graded skin layers with material properties varying in the thickness direction by a power gradation law. The Mori–Tanaka scheme is employed to evaluate the effective moduli. The elements are derived using Lagrangian and Hermitian polynomials to interpolate the in-plane and transverse displacements, respectively. The numerical result reveals that the frequencies obtained by the RTSDT element are slightly higher than the ones using the RFSDT element. It is also shown that the foundation supporting area plays an important role on the vibration of the plates, and the effect of the material distribution on the frequencies is dependent on this parameter. A parametric study is carried out to highlight the effects of the material inhomogeneity, the foundation stiffness parameters, and the foundation supporting area on the frequencies and vibration modes. The influence of the layer thickness and aspect ratios on the frequencies is also examined and highlighted.
ISSN:1024-123X
1563-5147
DOI:10.1155/2020/7180453