Loading…
Groundstates for Choquard type equations with Hardy–Littlewood–Sobolev lower critical exponent
For the Choquard equation, which is a nonlocal nonlinear Schrödinger type equation, $$-\Delta u+V_{\mu, \nu} u=(I_\alpha\ast \vert u \vert ^{({N+\alpha})/{N}}){ \vert u \vert }^{{\alpha}/{N}-1}u,\quad {\rm in} \ {\open R}^N, $$ where $N\ges 3$ , V μ,ν :ℝ N → ℝ is an external potential defined for μ...
Saved in:
Published in: | Proceedings of the Royal Society of Edinburgh. Section A. Mathematics 2020-06, Vol.150 (3), p.1377-1400 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | For the Choquard equation, which is a nonlocal nonlinear Schrödinger type equation,
$$-\Delta u+V_{\mu, \nu} u=(I_\alpha\ast \vert u \vert ^{({N+\alpha})/{N}}){ \vert u \vert }^{{\alpha}/{N}-1}u,\quad {\rm in} \ {\open R}^N, $$
where
$N\ges 3$
,
V
μ,ν
:ℝ
N
→ ℝ is an external potential defined for μ, ν > 0 and
x
∈ ℝ
N
by
V
μ,ν
(
x
) = 1 − μ/(ν
2
+ |
x
|
2
) and
$I_\alpha : {\open R}^N \to 0$
is the Riesz potential for α ∈ (0,
N
), we exhibit two thresholds μ
ν
, μ
ν
> 0 such that the equation admits a positive ground state solution if and only if μ
ν
|
---|---|
ISSN: | 0308-2105 1473-7124 |
DOI: | 10.1017/prm.2018.135 |