Loading…
Computational method for generalized fractional Benjamin–Bona–Mahony–Burgers equations arising from the propagation of water waves
In this research, by utilizing the concept of the mixed Caputo fractional derivative and left-sided mixed Riemann–Liouville fractional integral, we approximate the solution of generalized fractional Benjamin–Bona–Mahony–Burgers equations (GF-BBMBEs). In addition, using Genocchi polynomial properties...
Saved in:
Published in: | Sadhana (Bangalore) 2020-12, Vol.45 (1), Article 95 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | In this research, by utilizing the concept of the mixed Caputo fractional derivative and left-sided mixed Riemann–Liouville fractional integral, we approximate the solution of generalized fractional Benjamin–Bona–Mahony–Burgers equations (GF-BBMBEs). In addition, using Genocchi polynomial properties, we obtain a new formula to approximate the functions by Genocchi polynomials. In the process of computation, we discuss a method of obtaining the operational matrix of integration and pseudo-operational matrices of the fractional order of derivative. Also, an algorithm of obtaining the mixed fractional integral operational matrix is presented. Using the collocation method and matrices introduced, the proposed equations are converted to a system of nonlinear algebraic equations with unknown Genocchi coefficients. In addition, we discuss the upper bound of the error for the proposed method. Finally, we examine several problems to demonstrate the validity and applicability of the proposed method. |
---|---|
ISSN: | 0256-2499 0973-7677 |
DOI: | 10.1007/s12046-020-1302-y |