Loading…

How the Speed and Latitude of the Jet Stream Affect the Downstream Response to Recurving Tropical Cyclones

Recurving tropical cyclones (TCs) that interact with the jet stream can trigger Rossby wave packets that amplify the flow far downstream, but the extent to which the jet stream modulates TC–jet interactions and the development of the downstream response remains unclear. This study uses 25 idealized...

Full description

Saved in:
Bibliographic Details
Published in:Monthly weather review 2019-09, Vol.147 (9), p.3261-3281
Main Authors: Finocchio, Peter M., Doyle, James D.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Recurving tropical cyclones (TCs) that interact with the jet stream can trigger Rossby wave packets that amplify the flow far downstream, but the extent to which the jet stream modulates TC–jet interactions and the development of the downstream response remains unclear. This study uses 25 idealized simulations from the COAMPS-TC model to examine how the latitude and maximum wind speed of an initially zonal jet stream affect the downstream response to recurving TCs. During the first 5 days of the simulations, the formation of a jet streak and a ridge immediately downstream of the TC occurs earlier on low-latitude jets than on high-latitude jets. This is due to weaker TC inertial stability at low latitudes, which promotes negative potential vorticity advection by the irrotational outflow along the jet. Increasing the speed of the jet locally reduces inertial stability poleward of the TC, but does not profoundly affect the ability of the TC to perturb the jet. Beyond 5 days, the highest-latitude and fastest jets, which have the largest baroclinic growth rates, exhibit the highest-amplitude Rossby waves and the most rapidly intensifying surface cyclones farther downstream of the TCs. Both measures of the downstream response are more sensitive to changing the speed than the latitude of the jet. Deactivating condensational heating, shortly after TCs trigger a Rossby wave packet, decreases the amplitude and variability of the downstream flow by up to 3 times relative to the fully moist simulations. This result emphasizes the importance of moist diabatic processes for generating an amplified downstream response to recurving TCs within 7–10 days.
ISSN:0027-0644
1520-0493
DOI:10.1175/MWR-D-19-0049.1