Loading…
Squared Chromatic Number Without Claws or Large Cliques
Let $G$ be a claw-free graph on $n$ vertices with clique number $\unicode[STIX]{x1D714}$ , and consider the chromatic number $\unicode[STIX]{x1D712}(G^{2})$ of the square $G^{2}$ of $G$ . Writing $\unicode[STIX]{x1D712}_{s}^{\prime }(d)$ for the supremum of $\unicode[STIX]{x1D712}(L^{2})$ over the l...
Saved in:
Published in: | Canadian mathematical bulletin 2019-03, Vol.62 (1), p.23-35 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Let
$G$
be a claw-free graph on
$n$
vertices with clique number
$\unicode[STIX]{x1D714}$
, and consider the chromatic number
$\unicode[STIX]{x1D712}(G^{2})$
of the square
$G^{2}$
of
$G$
. Writing
$\unicode[STIX]{x1D712}_{s}^{\prime }(d)$
for the supremum of
$\unicode[STIX]{x1D712}(L^{2})$
over the line graphs
$L$
of simple graphs of maximum degree at most
$d$
, we prove that
$\unicode[STIX]{x1D712}(G^{2})\leqslant \unicode[STIX]{x1D712}_{s}^{\prime }(\unicode[STIX]{x1D714})$
for
$\unicode[STIX]{x1D714}\in \{3,4\}$
. For
$\unicode[STIX]{x1D714}=3$
, this implies the sharp bound
$\unicode[STIX]{x1D712}(G^{2})\leqslant 10$
. For
$\unicode[STIX]{x1D714}=4$
, this implies
$\unicode[STIX]{x1D712}(G^{2})\leqslant 22$
, which is within 2 of the conjectured best bound. This work is motivated by a strengthened form of a conjecture of Erdős and Nešetřil. |
---|---|
ISSN: | 0008-4395 1496-4287 |
DOI: | 10.4153/CMB-2018-024-5 |