Loading…

Squared Chromatic Number Without Claws or Large Cliques

Let $G$ be a claw-free graph on $n$ vertices with clique number $\unicode[STIX]{x1D714}$ , and consider the chromatic number $\unicode[STIX]{x1D712}(G^{2})$ of the square $G^{2}$ of $G$ . Writing $\unicode[STIX]{x1D712}_{s}^{\prime }(d)$ for the supremum of $\unicode[STIX]{x1D712}(L^{2})$ over the l...

Full description

Saved in:
Bibliographic Details
Published in:Canadian mathematical bulletin 2019-03, Vol.62 (1), p.23-35
Main Authors: Cames van Batenburg, Wouter, Kang, Ross J.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Let $G$ be a claw-free graph on $n$ vertices with clique number $\unicode[STIX]{x1D714}$ , and consider the chromatic number $\unicode[STIX]{x1D712}(G^{2})$ of the square $G^{2}$ of $G$ . Writing $\unicode[STIX]{x1D712}_{s}^{\prime }(d)$ for the supremum of $\unicode[STIX]{x1D712}(L^{2})$ over the line graphs $L$ of simple graphs of maximum degree at most $d$ , we prove that $\unicode[STIX]{x1D712}(G^{2})\leqslant \unicode[STIX]{x1D712}_{s}^{\prime }(\unicode[STIX]{x1D714})$ for $\unicode[STIX]{x1D714}\in \{3,4\}$ . For $\unicode[STIX]{x1D714}=3$ , this implies the sharp bound $\unicode[STIX]{x1D712}(G^{2})\leqslant 10$ . For $\unicode[STIX]{x1D714}=4$ , this implies $\unicode[STIX]{x1D712}(G^{2})\leqslant 22$ , which is within 2 of the conjectured best bound. This work is motivated by a strengthened form of a conjecture of Erdős and Nešetřil.
ISSN:0008-4395
1496-4287
DOI:10.4153/CMB-2018-024-5