Loading…
On the massive gluon propagator, the PT-BFM scheme and the low-momentum behaviour of decoupling and scaling DSE solutions
We study the low-momentum behaviour of Yang-Mills propagators obtained from Landau-gauge Dyson-Schwinger equations (DSE) in the PT-BFM scheme. We compare the ghost propagator numerical results with the analytical ones obtained by analyzing the low-momentum behaviour of the ghost propagator DSE in La...
Saved in:
Published in: | The journal of high energy physics 2011-01, Vol.2011 (1), Article 105 |
---|---|
Main Author: | |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We study the low-momentum behaviour of Yang-Mills propagators obtained from Landau-gauge Dyson-Schwinger equations (DSE) in the PT-BFM scheme. We compare the ghost propagator numerical results with the analytical ones obtained by analyzing the low-momentum behaviour of the ghost propagator DSE in Landau gauge, assuming for the truncation a constant ghost-gluon vertex and a simple model for a massive gluon propagator. The asymptotic expression obtained for the regular or decoupling ghost dressing function up to the order
is proven to fit pretty well the numerical PT-BFM results. Furthermore, when the size of the coupling renormalized at some scale approaches some critical value, the numerical PT-BFM propagators tend to behave as the scaling ones. We also show that the scaling solution, implying a diverging ghost dressing function, cannot be a DSE solution in the PT-BFM scheme but an unattainable limiting case. |
---|---|
ISSN: | 1029-8479 1029-8479 |
DOI: | 10.1007/JHEP01(2011)105 |