Loading…
Statistical State Dynamics of Weak Jets in Barotropic Beta-Plane Turbulence
Zonal jets in a barotropic setup emerge out of homogeneous turbulence through a flow-forming instability of the homogeneous turbulent state (zonostrophic instability), which occurs as the turbulence intensity increases. This has been demonstrated using the statistical state dynamics (SSD) framework...
Saved in:
Published in: | Journal of the atmospheric sciences 2019-03, Vol.76 (3), p.919-945 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Zonal jets in a barotropic setup emerge out of homogeneous turbulence through a flow-forming instability of the homogeneous turbulent state (zonostrophic instability), which occurs as the turbulence intensity increases. This has been demonstrated using the statistical state dynamics (SSD) framework with a closure at second order. Furthermore, it was shown that for small supercriticality the flow-forming instability follows Ginzburg–Landau (G–L) dynamics. Here, the SSD framework is used to study the equilibration of this flow-forming instability for small supercriticality. First, we compare the predictions of the weakly nonlinear G–L dynamics to the fully nonlinear SSD dynamics closed at second order for a wide range of parameters. A new branch of jet equilibria is revealed that is not contiguously connected with the G–L branch. This new branch at weak supercriticalities involves jets with larger amplitude compared to the ones of the G–L branch. Furthermore, this new branch continues even for subcritical values with respect to the linear flow-forming instability. Thus, a new nonlinear flow-forming instability out of homogeneous turbulence is revealed. Second, we investigate how both the linear flow-forming instability and the novel nonlinear flow-forming instability are equilibrated. We identify the physical processes underlying the jet equilibration as well as the types of eddies that contribute in each process. Third, we propose a modification of the diffusion coefficient of the G–L dynamics that is able to capture the evolution of weak jets at scales other than the marginal scale (side-band instabilities) for the linear flow-forming instability. |
---|---|
ISSN: | 0022-4928 1520-0469 |
DOI: | 10.1175/JAS-D-18-0148.1 |