Loading…
Topographic synthesis of arbitrary surfaces with vortex Jinc functions
When a circular aperture is uniformly illuminated, it is possible to observe in the far field an image of a bright circle surrounded by faint rings known as the Airy pattern or Airy disk. This pattern is described by the first-order Bessel function of the first type divided by its argument expressed...
Saved in:
Published in: | Applied optics (2004) 2020-05, Vol.59 (13), p.D95 |
---|---|
Main Authors: | , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | When a circular aperture is uniformly illuminated, it is possible to observe in the far field an image of a bright circle surrounded by faint rings known as the Airy pattern or Airy disk. This pattern is described by the first-order Bessel function of the first type divided by its argument expressed in circular coordinates. We introduce the higher-order Bessel functions with a vortex azimuthal factor to propose a family of functions to generalize the function defining the Airy pattern. These functions, which we call vortex Jinc functions, happen to form an orthogonal set. We use this property to investigate their usefulness in fitting various surfaces in a circular domain, with applications in precision optical manufacturing, wavefront optics, and visual optics, among others. We compare them with other well-known sets of orthogonal functions, and our findings show that they are suitable for these tasks and can pose an advantage when dealing with surfaces that concentrate a considerable amount of their information near the center of a circular domain, making them suitable applications in visual optics or analysis of aberrations of optical systems, for instance, to analyze the point spread function. |
---|---|
ISSN: | 1559-128X 2155-3165 |
DOI: | 10.1364/AO.383157 |