Loading…
Existence of Nonnegative Solutions of Nonlinear Fractional Parabolic Inequalities
We study the existence of nontrivial nonlocal nonnegative solutions \(u(x,t)\) of the nonlinear initial value problems \[ (\partial_t -\Delta)^\alpha u\geq u^\lambda \quad \text{in } \mathbb{R}^n \times\mathbb{R},\,n\geq 1 \] \[ u=0 \quad\text{in } \mathbb{R}^n \times(-\infty,0) \] and \[ C_1 u^\lam...
Saved in:
Published in: | arXiv.org 2020-05 |
---|---|
Main Author: | |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We study the existence of nontrivial nonlocal nonnegative solutions \(u(x,t)\) of the nonlinear initial value problems \[ (\partial_t -\Delta)^\alpha u\geq u^\lambda \quad \text{in } \mathbb{R}^n \times\mathbb{R},\,n\geq 1 \] \[ u=0 \quad\text{in } \mathbb{R}^n \times(-\infty,0) \] and \[ C_1 u^\lambda \leq(\partial_t -\Delta)^\alpha u\leq C_2 u^\lambda \quad\text{in } \mathbb{R}^n \times\mathbb{R},\,n\geq1 \] \[ u=0 \quad\text{in } \mathbb{R}^n \times(-\infty,0), \] where \(\lambda,\alpha,C_1\), and \(C_2\) are positive constants with \(C_1 |
---|---|
ISSN: | 2331-8422 |