Loading…
Regression Analysis with Latent Variables by Partial Least Squares and Four Other Composite Scores: Consistency, Bias and Correction
Compared to the conventional covariance-based SEM (CB-SEM), partial-least-squares SEM (PLS-SEM) has an advantage in computation, which obtains parameter estimates by repeated least squares regression with a single dependent variable each time. Such an advantage becomes increasingly important with bi...
Saved in:
Published in: | Structural equation modeling 2020-05, Vol.27 (3), p.333-350 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Compared to the conventional covariance-based SEM (CB-SEM), partial-least-squares SEM (PLS-SEM) has an advantage in computation, which obtains parameter estimates by repeated least squares regression with a single dependent variable each time. Such an advantage becomes increasingly important with big data. However, the estimates of regression coefficients by PLS-SEM are biased in general. This article analytically compares the size of the bias in the regression coefficient estimators of the following methods: PLS-SEM; regression analysis using the Bartlett-factor-scores; regression analysis using the separate and joint regression-factor-scores, respectively; and regression analysis using the unweighted composite scores. A correction to parameter estimates following mode A of PLS-SEM is also proposed. Monte Carlo results indicate that regression analysis using other composite scores can be as good as PLS-SEM with respect to bias and efficiency/accuracy. Results also indicate that corrected estimates following PLS-SEM can be as good as the normal-distribution-based maximum likelihood estimates under CB-SEM. |
---|---|
ISSN: | 1070-5511 1532-8007 |
DOI: | 10.1080/10705511.2019.1647107 |