Loading…

Stable Responsive EMG Sequence Prediction and Adaptive Reinforcement With Temporal Convolutional Networks

Prediction of movement intentions from electromyographic (EMG) signals is typically performed with a pattern recognition approach, wherein a short dataframe of raw EMG is compressed into an instantaneous feature-encoding that is meaningful for classification. However, EMG signals are time-varying, i...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on biomedical engineering 2020-06, Vol.67 (6), p.1707-1717
Main Authors: Betthauser, Joseph L., Krall, John T., Bannowsky, Shain G., Levay, Gyorgy, Kaliki, Rahul R., Fifer, Matthew S., Thakor, Nitish V.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Prediction of movement intentions from electromyographic (EMG) signals is typically performed with a pattern recognition approach, wherein a short dataframe of raw EMG is compressed into an instantaneous feature-encoding that is meaningful for classification. However, EMG signals are time-varying, implying that a frame-wise approach may not sufficiently incorporate temporal context into predictions, leading to erratic and unstable prediction behavior. Objective: We demonstrate that sequential prediction models and, specifically, temporal convolutional networks are able to leverage useful temporal information from EMG to achieve superior predictive performance. Methods: We compare this approach to other sequential and frame-wise models predicting 3 simultaneous hand and wrist degrees-of-freedom from 2 amputee and 13 non-amputee human subjects in a minimally constrained experiment. We also compare these models on the publicly available Ninapro and CapgMyo amputee and non-amputee datasets. Results: Temporal convolutional networks yield predictions that are more accurate and stable (p < 0.001) than frame-wise models, especially during inter-class transitions, with an average response delay of 4.6 ms (p < 0.001) and simpler feature-encoding. Their performance can be further improved with adaptive reinforcement training. Significance: Sequential models that incorporate temporal information from EMG achieve superior movement prediction performance and these models allow for novel types of interactive training. Conclusions: Addressing EMG decoding as a sequential modeling problem will lead to enhancements in the reliability, responsiveness, and movement complexity available from prosthesis control systems.
ISSN:0018-9294
1558-2531
1558-2531
DOI:10.1109/TBME.2019.2943309