Loading…

Capacities and Optimal Input Distributions for Particle-Intensity Channels

This work introduces the particle-intensity channel (PIC) as a model for molecular communication systems and characterizes the capacity limits as well as properties of the optimal (capacity-achieving) input distributions for such channels. In the PIC, the transmitter encodes information, in symbols...

Full description

Saved in:
Bibliographic Details
Published in:arXiv.org 2020-05
Main Authors: Farsad, Nariman, Chuang, Will, Goldsmith, Andrea, Komninakis, Christos, MĂ©dard, Muriel, Rose, Christopher, Vandenberghe, Lieven, Wesel, Emily E, Wesel, Richard D
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:This work introduces the particle-intensity channel (PIC) as a model for molecular communication systems and characterizes the capacity limits as well as properties of the optimal (capacity-achieving) input distributions for such channels. In the PIC, the transmitter encodes information, in symbols of a given duration, based on the probability of particle release, and the receiver detects and decodes the message based on the number of particles detected during the symbol interval. In this channel, the transmitter may be unable to control precisely the probability of particle release, and the receiver may not detect all the particles that arrive. We model this channel using a generalization of the binomial channel and show that the capacity-achieving input distribution for this channel always has mass points at probabilities of particle release of zero and one. To find the capacity-achieving input distributions, we develop an efficient algorithm we call dynamic assignment Blahut-Arimoto (DAB). For diffusive particle transport, we also derive the conditions under which the input with two mass points is capacity-achieving.
ISSN:2331-8422