Loading…
Perceptual Hashing applied to Tor domains recognition
The Tor darknet hosts different types of illegal content, which are monitored by cybersecurity agencies. However, manually classifying Tor content can be slow and error-prone. To support this task, we introduce Frequency-Dominant Neighborhood Structure (F-DNS), a new perceptual hashing method for au...
Saved in:
Published in: | arXiv.org 2020-05 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The Tor darknet hosts different types of illegal content, which are monitored by cybersecurity agencies. However, manually classifying Tor content can be slow and error-prone. To support this task, we introduce Frequency-Dominant Neighborhood Structure (F-DNS), a new perceptual hashing method for automatically classifying domains by their screenshots. First, we evaluated F-DNS using images subject to various content preserving operations. We compared them with their original images, achieving better correlation coefficients than other state-of-the-art methods, especially in the case of rotation. Then, we applied F-DNS to categorize Tor domains using the Darknet Usage Service Images-2K (DUSI-2K), a dataset with screenshots of active Tor service domains. Finally, we measured the performance of F-DNS against an image classification approach and a state-of-the-art hashing method. Our proposal obtained 98.75% accuracy in Tor images, surpassing all other methods compared. |
---|---|
ISSN: | 2331-8422 |