Loading…

Application of Spherical Magnetic Bearing in Magnetically Suspended Control and Sensitive Gyro

This paper presents a spherical magnetic bearing and analyzes its application in magnetically suspended control and sensitive gyro (MSCSG). The main advantage of the spherical magnetic bearing is that it can eliminate the interference torque in the process of rotor tilt and improve the suspension ac...

Full description

Saved in:
Bibliographic Details
Published in:Mathematical problems in engineering 2020, Vol.2020 (2020), p.1-11
Main Authors: Wang, Weijie, Liu, Bing, Cai, Yuanwen, Zengyuan, Yin, Chen, Xiaocen
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:This paper presents a spherical magnetic bearing and analyzes its application in magnetically suspended control and sensitive gyro (MSCSG). The main advantage of the spherical magnetic bearing is that it can eliminate the interference torque in the process of rotor tilt and improve the suspension accuracy of the rotor. By comparing the finite element analysis results of spherical magnetic bearing and traditional cylindrical magnetic bearing, the interference torque to the rotor of cylindrical magnetic bearing increases gradually with the increase of the rotor tilt angle. The interference torque to the rotor of spherical magnetic bearing does not change with the rotor tilt, and the interference torque is basically 0 Nm. Then, dynamic and static experiments were carried out to verify the interference torque generated in the process of spherical magnetic suspended rotor tilting. The experimental results show that the runout value of the rotor’s translation and tilt signals in both static and dynamic states is basically consistent with the value of the equilibrium state of the rotor (tilt angle = 0). Therefore, spherical magnetic bearing will not produce interference torque, which is of great significance for realizing the high-precision control of magnetic suspension inertia mechanism.
ISSN:1024-123X
1563-5147
DOI:10.1155/2020/7698794