Loading…
Hyperspectral Inversion of Petroleum Hydrocarbon Contents in Soil Based on Continuum Removal and Wavelet Packet Decomposition
Hyperspectral remote sensing is widely used to detect petroleum hydrocarbon pollution in soil monitoring. Different spectral pretreatment methods seriously affect the prediction and analysis of petroleum hydrocarbon contents (PHCs). This study adopted a combined spectral data preprocessing technique...
Saved in:
Published in: | Sustainability 2020-05, Vol.12 (10), p.4218 |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Hyperspectral remote sensing is widely used to detect petroleum hydrocarbon pollution in soil monitoring. Different spectral pretreatment methods seriously affect the prediction and analysis of petroleum hydrocarbon contents (PHCs). This study adopted a combined spectral data preprocessing technique that improves the prediction accuracy of petroleum hydrocarbons in soil. We combined continuum removal and wavelet packet decomposition (CR–Daubechies 3 (db3)) to process the hyperspectral reflectance data of 26 soil samples in the oil production work area in China and judged the correlation between spectral reflectance and petroleum hydrocarbons in soil. Partial least squares regression was used to construct an optimal model for the inversion of PHCs in soil and the leave-one-out cross-validation was used to select the best factor number. The best model of soil petroleum hydrocarbon inversion was determined by comprehensively comparing the initial spectrum, db3 to high-frequency spectrum, db3 to low-frequency spectrum, after-continuum removal spectrum, CR-db3 to high-frequency spectrum, and CR-db3 to low-frequency spectrum comprehensively. The main contributions of this study are as follows: (1) three-layer decomposition with CR-db3 can improve the correlation between spectral reflectance and PHCs and effectively improve the sensitivity of the spectrum to PHCs; (2) the prediction accuracy of the high-frequency spectrum of wavelet packet decomposition for PHCs in soil is higher than that of low-frequency information; (3) the proposed petroleum hydrocarbon prediction model based on CR-db3 processed spectra to obtain high-frequency information is optimal (coefficient of determination = 0.977, root mean square error of calibration = 3.078, root mean square error of cross-validation = 4.727, root mean square error of prediction = 4.498, ratio of performance to deviation = 6.12). |
---|---|
ISSN: | 2071-1050 2071-1050 |
DOI: | 10.3390/su12104218 |