Loading…
From ideal to reality: segmentation, annotation, and recommendation, the vital trajectory of intelligent micro learning
The soaring development of Web technologies and mobile devices has blurred time-space boundaries of people’s daily activities. Such development together with the life-long learning requirement give birth to a new learning style, micro learning. Micro learning aims to effectively utilize learners’ fr...
Saved in:
Published in: | World wide web (Bussum) 2020-05, Vol.23 (3), p.1747-1767 |
---|---|
Main Authors: | , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The soaring development of Web technologies and mobile devices has blurred time-space boundaries of people’s daily activities. Such development together with the life-long learning requirement give birth to a new learning style, micro learning. Micro learning aims to effectively utilize learners’ fragmented time to carry out personalized learning activities through online education resources. The whole workflow of a micro learning system can be separated into three processing stages: micro learning material generation, learning materials annotation and personalized learning materials delivery. Our micro learning framework is firstly introduced in this paper from a higher perspective. Then we will review representative segmentation and annotation strategies in the e-learning domain. As the core part of the micro learning service, we further investigate several the state-of-the-art recommendation strategies, such as soft computing, transfer learning, reinforcement learning, and context-aware techniques. From a research contribution perspective, this paper serves as a basis to depict and understand the challenges in the data sources and data mining for the research of micro learning. |
---|---|
ISSN: | 1386-145X 1573-1413 |
DOI: | 10.1007/s11280-019-00730-9 |