Loading…

Hyperparameter optimization with REINFORCE and Transformers

Reinforcement Learning has yielded promising results for Neural Architecture Search (NAS). In this paper, we demonstrate how its performance can be improved by using a simplified Transformer block to model the policy network. The simplified Transformer uses a 2-stream attention-based mechanism to mo...

Full description

Saved in:
Bibliographic Details
Published in:arXiv.org 2020-11
Main Authors: Chepuri Shri Krishna, Gupta, Ashish, Narayan, Swarnim, Rai, Himanshu, Manchanda, Diksha
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Reinforcement Learning has yielded promising results for Neural Architecture Search (NAS). In this paper, we demonstrate how its performance can be improved by using a simplified Transformer block to model the policy network. The simplified Transformer uses a 2-stream attention-based mechanism to model hyper-parameter dependencies while avoiding layer normalization and position encoding. We posit that this parsimonious design balances model complexity against expressiveness, making it suitable for discovering optimal architectures in high-dimensional search spaces with limited exploration budgets. We demonstrate how the algorithm's performance can be further improved by a) using an actor-critic style algorithm instead of plain vanilla policy gradient and b) ensembling Transformer blocks with shared parameters, each block conditioned on a different auto-regressive factorization order. Our algorithm works well as both a NAS and generic hyper-parameter optimization (HPO) algorithm: it outperformed most algorithms on NAS-Bench-101, a public data-set for benchmarking NAS algorithms. In particular, it outperformed RL based methods that use alternate architectures to model the policy network, underlining the value of using attention-based networks in this setting. As a generic HPO algorithm, it outperformed Random Search in discovering more accurate multi-layer perceptron model architectures across 2 regression tasks. We have adhered to guidelines listed in Lindauer and Hutter while designing experiments and reporting results.
ISSN:2331-8422