Loading…

A neural multi-context modeling framework for personalized attraction recommendation

In attraction recommendation scenarios, how to model multifaceted tourism contexts so as to accurately learn tourist preferences and attraction tourism features is a keystone of generating personalized recommendations. However, most of existing works generally focused on modeling spatiotemporal cont...

Full description

Saved in:
Bibliographic Details
Published in:Multimedia tools and applications 2020-06, Vol.79 (21-22), p.14951-14979
Main Authors: Bin, Chenzhong, Gu, Tianlong, Jia, Zhonghao, Zhu, Guimin, Xiao, Cihan
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In attraction recommendation scenarios, how to model multifaceted tourism contexts so as to accurately learn tourist preferences and attraction tourism features is a keystone of generating personalized recommendations. However, most of existing works generally focused on modeling spatiotemporal contexts of historical travel trajectories to learn tourists’ preferences, while neglected rich heterogeneous tourism side information, i.e., personal tourism constraints of tourists and tourism attributes of attractions. To this end, we propose a Neural Multi-context Modeling Framework (NMMF) to learn tourism feature representations of tourists and attractions by modeling multiple tourism contexts. Initially, we leverage a travel knowledge graph and massive original travelogues to construct the tourism attribute context of attractions and the travel trajectory context of tourists. Then, we design two context embedding models, named TKG2vec and Traj2vec, to model two kinds of context respectively. Both models learn feature vectors of tourist and attraction in contexts by elaborating neural networks to project each tourist and attraction into a uniform latent feature space. Finally, our framework integrates feature vectors derived from two models to acquire complete feature representations of tourists and attractions, and recommends personalized attractions by calculating the similarity between tourist and candidate attractions in the latent space. Experimental results on a real-world tourism dataset demonstrate our framework outperforms state-of-the-art methods in two personalized attraction recommendation tasks.
ISSN:1380-7501
1573-7721
DOI:10.1007/s11042-019-08554-5