Loading…

On the non-tangential convergence of Poisson and modified Poisson semigroups at the smoothness points of Lp-functions

The high-dimensional version of Fatou’s classical theorem asserts that the Poisson semigroup of a function f ∈ L p ( R n ) , 1 ≤ p ≤ ∞ , converges to f non-tangentially at Lebesque points. In this paper we investigate the rate of non-tangential convergence of Poisson and metaharmonic semigroups at μ...

Full description

Saved in:
Bibliographic Details
Published in:Periodica mathematica Hungarica 2020, Vol.80 (2), p.249-258
Main Authors: Bayrakci, Simten, Shafiev, M. F., Aliev, Ilham A.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The high-dimensional version of Fatou’s classical theorem asserts that the Poisson semigroup of a function f ∈ L p ( R n ) , 1 ≤ p ≤ ∞ , converges to f non-tangentially at Lebesque points. In this paper we investigate the rate of non-tangential convergence of Poisson and metaharmonic semigroups at μ -smoothness points of f .
ISSN:0031-5303
1588-2829
DOI:10.1007/s10998-019-00310-4