Loading…
Dry Peeling of Tomato by Infrared Radiative Heating: Part II. Model Validation and Sensitivity Analysis
In an accompanying study, a predictive mathematical model was developed to simulate heat transfer in a tomato undergoing double sided infrared (IR) heating in a dry-peeling process. The aims of the present study were to validate the developed model using experimental data and to investigate differen...
Saved in:
Published in: | Food and bioprocess technology 2014-07, Vol.7 (7), p.2005-2013 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | In an accompanying study, a predictive mathematical model was developed to simulate heat transfer in a tomato undergoing double sided infrared (IR) heating in a dry-peeling process. The aims of the present study were to validate the developed model using experimental data and to investigate different engineering parameters that most strongly influence the rate and uniformity of IR heating. The mode was verified by comparison of the predicted temperature profiles with experimental data for tomatoes with three dimensions. Uniformity of temperature distribution at tomato surface was quantified by surface-averaged temperatures and a derived temperature uniformity index. The predicted temperatures agreed well with experimental data (
r
2
> 0.9). Simulation results illustrated that IR heating induced a dramatic temperature increase on the tomato surface, which extended to 0.6 mm beneath (>90 °C) during a 60-s heating period, whereas interior temperature at the tomato center remained low ( |
---|---|
ISSN: | 1935-5130 1935-5149 |
DOI: | 10.1007/s11947-013-1188-3 |