Loading…

An over-regression suppression method to discriminate occluded objects of same category

Occlusion is a key challenge in object detection. It is hard to discriminate objects accurately when they gather together and occlude each other, especially when they belong to same category which easily leads to the problem that multiple objects are regressed into the same bounding box. To address...

Full description

Saved in:
Bibliographic Details
Published in:Pattern analysis and applications : PAA 2020-08, Vol.23 (3), p.1251-1261
Main Authors: Zhao, Bin, Wang, Chunping, Fu, Qiang
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Occlusion is a key challenge in object detection. It is hard to discriminate objects accurately when they gather together and occlude each other, especially when they belong to same category which easily leads to the problem that multiple objects are regressed into the same bounding box. To address this problem, an over-regression suppression (ORS) method is proposed to take full advantage of supervised information. Firstly, annotated information is utilized to compute the overlaps between different ground truth boxes. Then, the regression loss function is redesigned by adding a penalty term which is associated with the aforementioned overlaps to prevent Over - regression . Finally, the validity of the algorithm is proved by making some changes in Faster R-CNN, in which a k-means ++ clustering algorithm is used to automatically generate various size anchors by learning the shape regularities of objects from dataset, and the Soft-NMS, a nearly cost-free method, is introduced to replace the traditional NMS. Extensive evaluations on the challenging PASCAL VOC and MS COCO benchmarks demonstrate the superiority of ORS in handling intra-class occlusion. Its performance increases when dataset contains more large objects and hard samples, as demonstrated by the results on the MS COCO dataset.
ISSN:1433-7541
1433-755X
DOI:10.1007/s10044-019-00853-9