Loading…
Weighted Fourier Inequalities in Lebesgue and Lorentz Spaces
In this paper, we obtain sufficient conditions for the weighted Fourier-type transforms to be bounded in Lebesgue and Lorentz spaces. Two types of results are discussed. First, we review the method based on rearrangement inequalities and the corresponding Hardy’s inequalities. Second, we present Hör...
Saved in:
Published in: | The Journal of fourier analysis and applications 2020-08, Vol.26 (4), Article 57 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | In this paper, we obtain sufficient conditions for the weighted Fourier-type transforms to be bounded in Lebesgue and Lorentz spaces. Two types of results are discussed. First, we review the method based on rearrangement inequalities and the corresponding Hardy’s inequalities. Second, we present Hörmander-type conditions on weights so that Fourier-type integral operators are bounded in Lebesgue and Lorentz spaces. Both restricted weak- and strong-type results are obtained. In the case of regular weights necessary and sufficient conditions are given. |
---|---|
ISSN: | 1069-5869 1531-5851 |
DOI: | 10.1007/s00041-020-09764-4 |