Loading…

A Multi-Agent Reinforcement Learning-Based Data-Driven Method for Home Energy Management

This paper proposes a novel framework for home energy management (HEM) based on reinforcement learning in achieving efficient home-based demand response (DR). The concerned hour-ahead energy consumption scheduling problem is duly formulated as a finite Markov decision process (FMDP) with discrete ti...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on smart grid 2020-07, Vol.11 (4), p.3201-3211
Main Authors: Xu, Xu, Jia, Youwei, Xu, Yan, Xu, Zhao, Chai, Songjian, Lai, Chun Sing
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:This paper proposes a novel framework for home energy management (HEM) based on reinforcement learning in achieving efficient home-based demand response (DR). The concerned hour-ahead energy consumption scheduling problem is duly formulated as a finite Markov decision process (FMDP) with discrete time steps. To tackle this problem, a data-driven method based on neural network (NN) and {Q} -learning algorithm is developed, which achieves superior performance on cost-effective schedules for HEM system. Specifically, real data of electricity price and solar photovoltaic (PV) generation are timely processed for uncertainty prediction by extreme learning machine (ELM) in the rolling time windows. The scheduling decisions of the household appliances and electric vehicles (EVs) can be subsequently obtained through the newly developed framework, of which the objective is dual, i.e., to minimize the electricity bill as well as the DR induced dissatisfaction. Simulations are performed on a residential house level with multiple home appliances, an EV and several PV panels. The test results demonstrate the effectiveness of the proposed data-driven based HEM framework.
ISSN:1949-3053
1949-3061
DOI:10.1109/TSG.2020.2971427