Loading…
Improving task-specific representation via 1M unlabelled images without any extra knowledge
We present a case-study to improve the task-specific representation by leveraging a million unlabelled images without any extra knowledge. We propose an exceedingly simple method of conditioning an existing representation on a diverse data distribution and observe that a model trained on diverse exa...
Saved in:
Published in: | arXiv.org 2020-06 |
---|---|
Main Author: | |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We present a case-study to improve the task-specific representation by leveraging a million unlabelled images without any extra knowledge. We propose an exceedingly simple method of conditioning an existing representation on a diverse data distribution and observe that a model trained on diverse examples acts as a better initialization. We extensively study our findings for the task of surface normal estimation and semantic segmentation from a single image. We improve surface normal estimation on NYU-v2 depth dataset and semantic segmentation on PASCAL VOC by 4% over base model. We did not use any task-specific knowledge or auxiliary tasks, neither changed hyper-parameters nor made any modification in the underlying neural network architecture. |
---|---|
ISSN: | 2331-8422 |